Heat release freezing melt -dike

where K is the thermal diffusivity (m?2/s)
y' is a dummy variable for integration

t is relaxation time
y is distance from dike or sill center line




Effect on serpentinization

Accumulated serpentinization 20.01 Ma
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Thermal and rheological model at start qf rifting.
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TIME DURING EXTENSION
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Start of Margin Stage

Most active
Faults

=== | ess active
Faults

ge mwara-aippig

arrays (155-148 Ma)

m
Faults fb and f¢ further rotate from 45° to 40°. Crust thins from 23.4 to 21.3 km

Extension
direction

Faults rotate from 65° to 45°, crust thins from 30 to 23.4 km

Ranero & Perez-Gussinye, Nature, 2010



Kinematic model: Basin Stage

Most active
Faults

=== | ess active
Faults

ge mwara-aippig

arrays (155-148 Ma)

m
Faults fb and f¢ further rotate from 45° to 40°. Crust thins from 23.4 to 21.3 km
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b
Extension
direction

Faults rotate from 65° to 45°, crust thins from 30 to 23.4 km

Ranero & Perez-Gussinye, Nature, 2010
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What are fault and crustal thinning kinematics
leading to break-up?

Reconstruction of Iberia-Newfoundland Margins at Anomaly M0




BLOCKS BATHYMETRY AND
PRE-STACK DEPTH MIGRATION- IAM11

Early

Faulting sequential in time.
Faults cut through progressively thinner crust
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1- Image Pre-Syn rift sediment -> synrift younger basinward
2- Faults start at 65°-55° and rotate to 42°-28°.

3- Fault block dimensions decrease basinward.

4- Faults cut progressively thinner brittle layer.




BATHYMETRY AND

BLOCKS
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2- Faults start at 65°-55" and rotate to 42°-28°.
3- Fault block dimensions decrease basinward.
4- Faults cut progressively thinner brittle layer.




Model rules: Basin stage

Br=L"/Lo=sindv/sind'=(Zo/r)/(Z'/r)=Lo/Z’

-«

Upper crust brittle & lower crust ductile
Upper and lower crust extend by the same amount.

Lower crust deforms compliant to upper crust.
Area conservation: X+Y+Z=T

A wide brittle-ductile transition.

Ranero & Perez-Gussinye, Nature, 2011



Model rules
Margin stage:

Lower crust progressively brittlel!

- Upper and lower crust extend by
the same amount. Lower crust

deforms compliant to upper crust. o=

- Area conservation: X+Y+Z=T

- Area conservation leads to back-

rotation of previous planar faults.

Ranero & Perez-Gussinye, Nature, 2011



Implications

‘No active faulting at low angles, just normal
Andersonian faulting (normal faults at 60°-30°).

fn1 nd

New Fault f5 starts at 60° to 32°
Old Fault fn2 starts at 35°
Old Fault fnl starts at 45°

INw> 7 AT NSNS

Faults rotate from 65° to 45°, crust thins from 30 to 23.4 km



Implications

‘No active faulting at low angles, just normal
Andersonian faulting (normal faults at 60°-30°).

f6 5 14 13 f2 M

New fault f1 starts where the crust is ~16.6 km thick
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Faults rotate from 65° to 45°, crust thins from 30 to 23.4 km



Implications

‘No active faulting at low angles, just normal
Andersonian faulting (normal faults at 60°-30°).
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Faults rotate from 65° to 45°, crust thins from 30 to 23.4 km

Faults rotate from 65° to 45°, crust thins from 30 to 23.4 km



Implications

‘No active faulting at low angles, just normal
Andersonian faulting (normal faults at 60°-30°).
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Faults rotate from 65° to 45°, crust thins from 30 to 23.4 km



Implications

‘No active faulting at low angles, just normal
Andersonian faulting (normal faults at 60°-30°).
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Faults rotate from 65° to 45°, crust thins from 30 to 23.4 km

Faults rotate from 65° to 45°, crust thins from 30 to 23.4 km



Implications (cont.)

Occurrence of shallow pre-rift and syn-rift
over the whole basin, even on top of
extremely thinned crust. No need for

anomalous subsidence.

Peak heat-flow moves oceanward. Post-rift
sediments on continental platform may
pre-date continental break-up.



Implications (Illustrated)

CRUST BREAKS
MANTLE EXHUMED- F7 ROTATES BACK
Old Fault fnl rotates from 35° to 27°

Fault f7 starts at 60°

New fault f1 starts where the crust is ~16.6 km thick
Lop

7

Faults rotate from 65° to 45°, crust thins from 30 to 23.4 km



Implications (Illustrated)

CRUST BREAKS
MANTLE EXHUMED- F7 ROTATES BACK
Old Fault fnl rotates from 35° to 27°

Fault f7 starts at 60°

New fault f1 starts where the crust is ~16.6 km thick
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Faults rotate from 65° to 45°, crust thins from 30 to 23.4 km
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Margin architecture
Melting & Serpentinisation

Influence lower crustal rheology:
1- lower crustal composition



a) Temperatures [C] b) Differential stress ¢ Temperatures [C] d) Differential stress
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Boundary conditions: constant velocity 5mm/yr at box edges
Brittle and viscous strain softening
Initial weak seed: temperature higher by 100C close to Moho.



_Narrow margin ~ 180 km _ Wide margin ~ 300 km

Sequential faulting, @ 14 ma distributed faulting ~ 150 km
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Melting & Serpentinization
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- Dry peridotite solidus melting (parametrization Phipps Morgan, G-cubed, 2001).
- Solidus increases with increasing depletion.
- Serpentinization rate dependence on temperature (Emmanuel and Berkowitz, 2006)
- Serpentinization only occurs when the whole crust is brittle.




Melting dependency on velocity of extension
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Effect of lower crustal composition
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Margin architecture
Melting & Serpentinisation



Questions

* Formation of asymmetry.
+ Degree of asymmetry and margin width.

* Fault geometry with extension .~ and along

margin length.
* Oceanization style (abrupt transition vs exhumed

mantle).

Lower crustal rheology: composition, crustal
thickness, velocity.



Questions

* Formation of asymmetric conjugate margins.
+ Degree of asymmeftry.

* Margin width.

» Controls on faulting patterns.

» Oceanization style (abrupt transition vs exhumed

manﬂe). Part 4


Svara
Typewritten Text
Part 4

http://searchanddiscovery.com/documents/2016/30435perez-gussinye/part4.pdf



