Asymmetry by sequential faulting -
Dynamics of the system
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Lithospheric mantle: Dry Olivine

Asthenospheric mantle: Wet Olivine
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Full extension velocity 8 mm/yr
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Full extension velocity 8 mm/yr
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Full extension velocity 8 mm/yr
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Full extension velocity 8 mm/yr
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Full extension velocity 8 mm/yr
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Full extension velocity 8 mm/yr

27.01MA] Logarithmic strain rate (1/s) s
18 -17 16 15 14 13

27.01MA] Logarithmic viscosity (Pa s) L il I
17 19 21 23 25 27

<J¢;;====:*!! =

N
>-50
3
-100 [
0 50 100 150 200 _25p = 300 350 400 450 500
X 1IN KM

Brune, Heine, Perez-Gussinye & Sobolev, Nature comm., 2014



Full extension velocity 8 mm/yr
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Full extension velocity 8 mm/yr
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Full extension velocity 8 mm/yr

37.01MA] Logarithmic strain rate (1/s) B
18 -17 16 15 14 13

37.01MA] Logarithmic viscosity (Pa s) [ il I
17 19 21 23 25 27

= a8 e _‘..c—____ﬁ—___"‘ — = _
p— / -~ %00 —— :tl__
100 r\ A
0 50 100 150 200 258 300 350 400 450 500
X In km

Brune, Heine, Perez-Gussinye & Sobolev, Nature comm., 2014



Changing fault patterns

San Francisco
craton

,,,,,,, 7 craton

45

salt basin continent-ocean transition

Depth (Km)

Distance (Km)



Modes of extension and oceanization along
the Brazilian/African margins
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South Atlantic margins

1- Camamu - South Gabon
2- Campos - Kwanza Crustal thickness from reciever functions (Assumpaco)
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3- North Santos - S. Kwanza

From North to South:
* Basin width increases

« Initial lithospheric
configuration changes from
craton to mobile belt

* Degree of asymmetry varies.

« Extension velocity increases,
from 2.5 km/Myr- 5km/Myr

(half).
 Crust is 37- 40 km in Camamu

and Santos and 35 - 40 km in
Campos.

Perez-Gussinye, Araujo, et al., in prep.



Questions

 What controls the formation of
asymmetry and its degree?

* What controls margin width and
faulting pattern?

* Which oceanization styles can we
expect (exhumed mantle/abrupt
transition to magmatic crust):

Lower crustal rheology: composition, crustal
thickness, velocity.
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Wide margin ~ 580 km Narrow margin
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Degree of asymmetry & margin width

San Francisco
craton

e
PRI

wshers - Ofshore s -+ Onshod

e
P

salt basin continent-ocean transition

Presenter’s notes: These are interpretations of 3 seismic sections representative for the tectonic architecture along the margin. From
North to South the combined conjugate margin width dramatically increases. To the north the asymmetry is very marked and observed
from the necking zone. Fault offsets are very large, indicating large synrift subsidence. The asymmetry of Campos-Kwanza is
observed in the larger width of the Campos but archectural styles of both margins are similar, with faults dipping both inward and
outward of the basins and having small fault offset. The North Santos is extremely wide. Here faults have also small offsets and dip in
both directions. The conjugate margin is much narrower, producing a larger asymmetry in terms of conjugate margin width.



1. Conjugate margin degree of asymmetry and width
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Presenter’s notes: I have been focusing in answering the following questions: The evolution in which extension is small and there is
no marked asymmetry; the basin stage, to a stage in which break-up has occurred and what remains are two asymmetric margins on
both sides of the new ocean. Seismic data also show that these last stages of rifting are associated with the occurrence of detachment-
like faults and we want to understand what is their role in generating the asymmetry and in break-up.




1. Conjugate margin degree of asymmetry and width
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3. Transition to oceanic spreading

San Francisco N
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- West Iberia: wide COT consisting of exhumed and serpentinised
mantle.

« Slow extension (ultra-slow end-member).
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Presenter’s notes: 26In summary, our preliminary results show the following: A narrow rift occurs when there is no channel of low
viscosity in the lower crust. Most of the lower crust has a viscosity of 10*'° Pascals/second or more. Sequential faulting mode occurs
when there is a localized pocket of low viscosity that connects the crust with the mantle. For wide rift mode to occur, there needs to be
an extended and thin low-viscosity channel in the lower crust. Finally the core complex mode occurs when a less extended and thicker
low viscosity region takes place in the lower crust. We observe that the viscosity values for core complex mode are lower than in the
wide mode. What we shall investigate in the near future: If for other velocities and crustal thicknesses, do these modes occur for the
same viscosity values and spatial viscosity distribution?



Modes of extension
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Presenter’s notes: 1. There are many parameters that have an impact on the final architecture and symmetry of the margins. 2.
Rheology of the lower crust seems to play a very important role. 3. For strong crust margins developed symmetrically and narrow
(type 1). 4. For intermediate strength crust asymmetry is favoured. 5. For a very weak crust the conjugated margins are symmetric and
wide (type 2). 6. However, the degree of asymmetry changes regionally in areas of similar lower crustal rheology, for example in the
South Atlantic where we observe: 7. Narrow asymmetric margins for Camumu-Gabon, 8. Wider symmetric for Campos Kwanza, 9.
And very wide asymmetric for North Santos-South Kwanza. 10. Also note that the polarity of the asymmetry changes from North
(African margin is the widest) to South (Brazilian margin is the widest). 11. Looking at this map we can note that the narrowest
margins developed close to a craton while the widest developed where the craton is far away from the margin edge.



Questions

* Formation of asymmetry.
+ Degree of asymmetry and margin width.

* Fault geometry with extension .~ and along

margin length.
* Oceanization style (abrupt transition vs exhumed

mantle).

Lower crustal rheology: composition, crustal
thickness, velocity.



Questions

* Formation of asymmetric conjugate margins.

+ Degree of asymmeftry.

* Margin width.

» Controls on faulting patterns.

» Oceanization style (abrupt transition vs exhumed

mantle).  pats
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