Mystery in the Mushwad: The Origin of Gas in the Big Canoe Creek Field, Saint Clair County, Alabama, USA*

Richard Drozd

Search and Discovery Article #20344 (2016)**
Posted February 15, 2016

*Adapted from oral presentation given at AAPG Eastern Section 44th Annual Meeting, Indianapolis, Indiana, September 20-22, 2015
**Datapages©2016 Serial rights given by author. For all other rights contact author directly.

Weatherford Laboratories, Houston TX (dick.drozd@weatherfordlabs.com)

Abstract

The Big Canoe Creek Field produced gas from the Middle Cambrian Conasauga Formation. The production established in 2005 was hailed as an exciting new play in the oldest and most structurally complex formation in North America. By 2010 the field was abandoned having produced only 187 MMcf of dry gas from 13 wells out of a predicted recovery of 1 bcf. What happened to the other 800 MMcf? Is the issue with the rocks, the size of the resource, or the thermal maturity?

The Conasauga is a weak rock unit that contains the basal Appalachian Thrust detachment. It has been tectonically thickened as a result of this deformation into what is identified as the “Mushwad”, producing the multiple cycles of fracturing and cementation. Subsequent erosion has brought the Conasauga to the surface in the area of the field.

Conasauga cuttings are low in organic richness. However, thin zones were identified in core samples containing marginal-to-good organic richness. The Conasauga rocks and gases have equivalent thermal maturity within the dry-gas generation window, consistent with local generation of the hydrocarbons. Yield calculations suggest that thin moderately rich intervals were sufficient to charge the field. The kerogen porosity would be high; but total porosity would be minimal due to the low organic richness. Production from individual wells had relatively high initial rates, followed by an exponential decline to low values. The low predicted porosity is consistent with the low residual production after the fracture gas is recovered.

References Cited

MYSTERY IN THE MUSHWAD: The Origin of Gas in the Big Canoe Creek Field, Saint Clair County, Alabama, USA

Richard Drozd (Dick)
dick.drozd@weatherfordlabs.com
History [Recall gas boom]

- First well Amoco-Arco Young 34-2#1 1984 flow ~1 MMcf/d
- Discovery Dominion BWB Inc. Dawson 34-03-01 March 2005 [$6.50/MMBtu]
- Highmount (Lowes) acquired Dominion holdings 2007 [$7.60/MMBtu]
- Energen operator of Big Canoe Creek Field, Wrote off acreage 2010 [June, 2010; $4.60 MMBtu]
Malleable
Unctuous
Shale
Weak-layer
Accretion in a Ductile Duplex (Thomas, AAPG 2001)
Geological Model

Geological Survey of Alabama, Monograph 16 (2005)

Seismic Interpretation

Regional seismic data published courtesy of Seitel, Inc.

Energen, Alabama Shales, 2008
Field Production History
Average Daily Production by Well

Production (MCF/d)

- Burgess E28-11-58
- Burgess E28-09-30
- Oakes E23-11-26

Weatherford Laboratories
Other Decline Curves

Devon Barnett Shale Type Curves

Drilling Info 2010

Chesapeake Energy
Other Decline Curves
Unconventional Requirements

• Adequate organic richness (volume)
• Appropriate organic matter type (type)
• Sufficient thermal maturity, but not too extreme
• Producible hydrocarbons
• Retention of hydrocarbons (limited migration)
Kerogen Quality Plot

[Graph showing kerogen quality plot with data points for different well names: DAWSON 33-09, DAWSON 34-03, McANULTY ET AL 20-11, WILLIAMS 29-12, YOUNG J J 34-2. The graph plots Remaining Hydrocarbon Potential (mg HC/g Rock) against Total Organic Carbon (TOC wt %). The kerogen types are categorized as Type I (oil-prone usually lacustrine), Type II (oil-prone usually marine), Type III (gas-prone), Type IV (usually inert). The graph also highlights Organic Lean and Mixed Type II-III (oil-gas-prone).]
Thermal Maturity

Several wells plot along the same depth trend → similar thermal history

All in gas window from 2000 ft and deeper; reaching 2% at 8000 ft

Local area has sufficient thermal maturity to have generated fairly dry gas.

Suggests ~28,000 ft of erosion since maximum thermal stress
Natural Gas Geochemistry
Geochemistry Implications

1. Source rock richness for most samples is < 1% TOC
 Does not meet threshold for commercial play
2. Limited intervals of adequate richness in core samples
3. Thermal maturity is within ideal range for natural gas generation and preservation
4. Natural gas maturity and composition is consistent with the local rocks
1. Source rock richness for most samples is < 1% TOC Does not meet threshold for commercial play
2. Limited intervals of adequate richness in core samples
3. Thermal maturity is within ideal range for natural gas generation and preservation
4. Natural gas maturity and composition is consistent with the local rocks
5. Why is there a field??? “Mystery”
Why should anyone care?

Because

• Exploration target in the Rogersville Shale (Conasauga Group) in Rome Trough Kentucky, West Virginia, Pennsylvania
• Mixed reports on few test wells
Examine Data Again-Yield Calculations

- Best core samples from Dawson 30-09#2A at 1.9% Ro equivalent
- Gas generated (theory) $\rightarrow 552 \text{ Mcf/ft}^2$
- Aggregate core $\sim 1 \text{ ft} \rightarrow 0.35 \text{ bcf/mi}^2$ Only $\frac{1}{3}$ previous estimates
- Retention of gas 15% to 25% other plays
- Retention factor of 5% $\rightarrow 80 \text{ MMcf gas available per well in the Big Canoe Creek Field}$.
- At 1% retention factor \rightarrow only 16 MMcf gas/well
- Dawson 34-03-01 well had the largest cumulative production at 50 MMcf of gas, closer to the 5% retention factor.
- Only seven of the thirteen field wells produced over 10 MMcf
The maximum thermal stress occurred during stacking of the “mushwad”

Subsequent erosion has brought the Conasauga to the near surface

The Big Canoe Creek Field gases and Conasauga sediments have equivalent thermal maturity, consistent with local generation

Although organic richness in the Conasauga cuttings is low, the core from the Dawson 33-09#2A well has thin intervals of modest (~1% TOC) richness.
Model for Mystery 2

- Yield calculations suggest that the thin intervals are sufficient to charge Big Canoe Creek wells using a retention factor of 1%
- The kerogen porosity of the Conasauga is probably high but limited organic matter
- Production from fractures \rightarrow high initial flow rates followed by very low flow from micro-porosity.
- As a consequence of the complex history:
 - A source for gas outside the Conasauga is unlikely,
 - the low retention factors assigned are reasonable.
Implications for other Conasauga Plays Contrast to Big Canoe Creek

- Need high, sustained organic richness
- Production in Marcellus up to 3.5% + Ro (CAI up to 5)
- Reversals in carbon isotope do not limit commercial production
- Gas retention factor –
 - preservation of organic and/or natural porosity a concern at high thermal maturity
 - Areas of high tectonic disturbance may have enhanced migration pathways and low retention
Acknowledgements

- Weatherford Laboratories
- Alabama Geological Survey and Alabama Oil and Gas Commission
- Previous workers in the area with WFTL/Humble GS
- Dr. William Thomas for wonderful name!
- Contact: Dick.drozd@weatherfordlabs.com