Reservoir Facies Impact on Drilling, Completion and Production in the Cardium Tight Oil Play*

Rainer D. Czypionka¹, Dale Gulewicz², Don Keith³, and Marlon Rey³

Search and Discovery Article #10869 (2016)**

Posted October 17, 2016

*Adapted from oral presentation given at AAPG Annual Convention & Exhibition, Calgary, Alberta, Canada, June 19-22, 2016
**Datapages © 2016 Serial rights given by author. For all other rights contact author directly.

¹Geology, Lightstream Resources, Calgary, Alberta, Canada (rczypionka@lightstreamres.com)
²Completions, Lightstream Resources, Calgary, Alberta, Canada
³Supervisor Geosciences, Lightstream Resources, Calgary, Alberta, Canada
⁴Drilling Engineer, Lightstream Resources, Calgary, Alberta, Canada

Abstract

Development of the Cardium tight oil play through horizontal drilling and multistage hydraulic fracturing since 2008 has established an important unconventional resource. With approximately 3,900 Cardium horizontal wells with multistage hydraulic fracture treatments drilled to date, industry continues to push towards the depositional limits of the Cardium play fairway, where understanding the reservoir is key. The two main Cardium reservoir facies, thickly bedded sandstones and bioturbated sandstones, are described and their reservoir characteristics discussed. This presentation discusses the impact of the reservoir facies on drilling, completion and production from three distinct areas of the play, West Pembina, Garrington and Lochend. Regionally, the study area is spread over 250 kilometers from northwest to southeast within the Cardium play fairway.

Beginning in the northwest at West Pembina, the Cardium reservoir is characterized by thickly bedded sandstones in a halo around the conventional Pembina Cardium oil field. Further south at Garrington, the Cardium reservoir is characterized by bioturbated sandstones with reservoir permeability too low to be economically developed by vertical wells. The most southern area is Lochend and there the Cardium play is characterized by thickly bedded sandstones overlying bioturbated sandstones with reservoir previously too thin for economic development by vertical wells. Drilling considerations such as well bore placement, steering (sliding percentage), number of bit runs, and time drilling the lateral section are compared in the three areas. Completion design can be optimized through understanding the influence of reservoir facies on completion break-down
pressure, scour requirements, pumping rates and proppant size and concentration. Optimal completion design lessens occurrences of missed stages and screen outs. Ultimately, more efficient drilling and completion operations reduce costs and improve well economics.

References Cited

https://www2.nau.edu/rcb7/namK85.jpg

http://ags.aer.ca/publications/chapter-pdfs
IMPACT OF DEPOSITIONAL FACIES ON DRILLING, COMPLETIONS AND PRODUCTION IN THE CARDIUM TIGHT OIL PLAY
RAINER CZYPIONKA, DALE GULEWICZ, DON KEITH, MARLON REY
Identify the main reservoir facies and associated challenges to economically develop the Cardium tight oil play.
Identify the main reservoir facies and associated challenges to economically develop the Cardium tight oil play.

- **Area Data Set**
 - West Pembina, Garrington, Lochend
- **Reservoir Facies in each area**
 - Net Pay
 - PhiH (average porosity X net pay)
 - Permeability
 - Bulk volume shale
 - Residual water saturations
- **Lateral Drilling Challenges**
 - Area specific
- **Drilling Performance**
 - Lateral drilling days
 - % sliding & number of bit runs in lateral
- **Completion Performance & Strategies**
 - Treating Pressures
 - Fluid Rates
 - Screen Outs
- **Production performance by area**
Deposited on the western margin of the Cretaceous interior seaway 89 million years ago.
CARDIUM PRODUCING AREAS

- Pembina – Multistage fracing, horizontal well development in the ‘halo’ of the conventional oil field
- Garrington and Lochend - Cardium tight oil play economic through horizontal drilling and multistage fracing
- Black dots vertical Cardium producers
- Green lines horizontal Cardium producers
AREA DATASET

1350-1500m laterals, monobore design drilled with invert, N/S and E/W oriented

WEST PEMBINA
(48-11W5)
- TVD 1880 meters
- $P^*=20$ MPa
- 18 well data set

GARRINGTON
(32-3W5)
- TVD 1950 meters
- $P^*=22-24$ MPa
- 13 well data set

LOCHEND
(27-3W5)
- TVD 2250 meters
- $P^*=25-26$ MPa
- Close to deformation belt
- 9 well data set

Cored wells
• Deposition in lower shoreface and lower shoreface transition setting

Geological Atlas of Western Canada Chapter 23 (Figure 23.16).
Stacked parasequences (3 cycles) of **clean**, thick bedded lower shoreface reservoir sandstone with interbeds of tight silty mudstones.
Gross 11.0 meters
Net Pay 6.5 meters
Avg. Porosity 9.8%
PhiH 0.64
SW 15%
• Lower shoreface transition comprising **muddy**, burrowed, reservoir sandstone
• Sediment reworked or churned up by organisms including worms and crustacean
• Original sedimentary structures commonly obscured through bioturbation
• Burrowing may enhance vertical permeability
• Bioturbated facies characterized by high shale volume in reservoir
 \(V_{sh} = \frac{\text{deltaphi}}{\text{deltaphi}_\text{shale}} \) - \(V_{sh} = 9/21 = 43\% \) (\(V_{ss} = 57\% \))
• Net Pay 3.4m
• BVW = \(V_{sh} X S_{wsh} X \phi_{ish} + V_{ss} X S_{wss} X \phi_{iss} \)
• Sw = BVW/Avg por = 36.8%
- Thick bedded lower shoreface sandstone underlain by bioturbated lower shoreface transition **muddy** sandstone
LOCHEND CARDIUM LOG

100/06-04-027-03W5/00

Kcard ss: 2224.8 m
Kcard ss: -981.3 m

Reference (KB) Elev.: +1243.5 m

Thick bedded
2.0m Net Pay
Avg. Por 13%
Sw 7.5%

Bioturbated
3.0m Net Pay
Avg. Por. 6%
Sw 36.5%

Net Pay 5.0m (Thick bedded + bioturbated)
Avg. Por 9.0%
PhiH 0.45
Avg. Sw 24.6%
THIN SECTION COMPARISON OF RESERVOIR FACIES

Thick bedded facies
- 14% porosity; 2.0md permeability
- Low clay content
- common quartz overgrowths/cement
- Abrasive when drilling

Bioturbated facies
- 6-7% porosity; 0.1-0.2md permeability
- High detrital clay/shale volume
- Less abrasive & easier to drill
West Pembina thick bedded facies exhibits higher average permeability

Lochend thick bedded facies porosity & permeability > bioturbated facies

Garrington bioturbated facies – core analysis over top one meter
- Increase in Pore Volume Water with lower porosity
- Bioturbated reservoir average Sw 25-36%
- Thick bedded sandstone reservoir average Sw 10-17%
TARGETING AND WELL PATH CONTROL

WEST PEMBINA

• Interbedded lithology
• Complex gamma interpretation
• Difficult well path steering due to variability in formation hardness

10m

GARRINGTON

• Cleaning-upward gamma profile
• Basic gamma interpretation
• Easy well path steering in bioturbated facies

10m

LOCHEND

• Thick muddy sandstone reservoir
• Moderate gamma interpretation
• Easy well path steering due to high clay content
Among the 3 areas, Garrington drills the fastest followed by Lochend and then West Pembina.
GRILLING PERFORMANCE
% Sliding / Bit Runs in the Lateral

- Garrington wells have less average % total slides and average number of bit runs in the lateral followed by Lochend and West Pembina
- Attributed to depositional facies

Garrington avg. 8% lateral sliding/1.0 bit runs

Lochend avg. 12% lateral sliding/1.5 bit runs

West Pembina avg. 16% sliding/1.7 bit runs
COMPLETIONS

COMPLETIONS DESIGN ALL AREAS

- Slickwater fluid
- Pumped at 6 – 9 m³/min
- 20 tonne / stage
- ±80 m average stage lengths
- 20 stages
- Open hole ball drop systems

- Our ultimate goal is to successfully fracture stimulate well, eliminating expensive screen outs, lost production and lower reserves recovery due to incomplete or skipped stages
Garrington – Bioturbated Facies

- Easiest to fracture stimulate
- Lower treating pressures
- Higher pumping rates
- Rarely require scours
- Typically able to pump to design parameters

- Design differences
 - Higher rates near toe of wellbore
 - 30/50 mesh and 20/40 mesh sand programmed
GARRINGTON COMPLETIONS
BIOTURBATED FACIES

Consistent gas and gamma ray from heel to toe

Relatively low pumping pressures and consistent treating rates
LOCHEND COMPLETIONS

Lochend – Bioturbated and Thick Bedded Facies

- Easier to fracture stimulate
- Lower treating pressures
- Higher pumping rates
- Rarely require scours
- Typically able to pump to design parameters
- Design differences
 - Higher rates earlier in wellbore
 - 30/50 mesh sand programmed
LOCHEND COMPLETIONS

BIOTURBATED AND THICK BEDDED FACIES

Consistent gas and gamma ray from heel to toe

Relatively low pumping pressures and consistent treating rates
West Pembina – Thick Bedded Facies

- Toughest to fracture stimulate
- Highest breakdown pressures
- Highest maximum treating pressures
- Lowest average pumping rate
- Slickwater minimum rate of 5 – 6 m³/min can be difficult to achieve and may require scours
- Increased chance of incomplete and skipped stages and higher risk of screen outs
- Design differences
 - Typically lower treating rates
 - Only 40/70 mesh and 30/50 mesh sand programmed
WEST PEMBINA COMPLETIONS
THICK BEDDED FACIES

Tortuous well path & fluctuating Gamma/Gas

Higher pumping pressures / lower rates
WEST PEMBINA STIMULATION CHART

Low Treating Pressure Stage

High Treating Pressure Stage

Treating Pressure (MPa)

Rate & Concentration

Time (min)
WEST PEMBINA STIMULATION CHART

Place sand after 3 scours

1st scour

2nd & 3rd scour

Time (min)
CUMULATIVE OIL PRODUCTION (2 YEARS)

- **Lochend**
 - Net Pay: 5.0m
 - Avg. Por.: 9.0%
 - PhiH: 0.45
 - Perm.: 0.02-2.0md
 - Avg. Sw: 24.6%

- **West Pembina**
 - Net Pay: 6.5m
 - Avg. Por.: 9.8%
 - PhiH: 0.64
 - Perm.: 0.1-2.5md
 - Sw: 15%

- **Garrington**
 - Net Pay: 5.0m
 - Avg. Por.: 7.2%
 - PhiH: 0.36
 - Perm.: 0.05-1.36md
 - Avg. Sw: 33%

1 year
<table>
<thead>
<tr>
<th></th>
<th>WEST PEMBINA</th>
<th>GARRINGTON</th>
<th>LOCHEND</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESERVOIR FACIES</td>
<td>Stacked thick bedded sandstone</td>
<td>Muddy bioturbated sandstone</td>
<td>Muddy bioturbated sandstone overlain by thick bedded sandstone</td>
</tr>
<tr>
<td>RESERVOIR PROPERTIES</td>
<td>Net Pay 6.5m</td>
<td>Net Pay 5.0m (7.0m -Vsh)</td>
<td>Net Pay 5.0m</td>
</tr>
<tr>
<td></td>
<td>Average Porosity 9.8%</td>
<td>Average Porosity 7.2%</td>
<td>Average Porosity 9.0%</td>
</tr>
<tr>
<td></td>
<td>PhiH 0.64</td>
<td>PhiH 0.36</td>
<td>PhiH 0.45</td>
</tr>
<tr>
<td></td>
<td>Sw 15%</td>
<td>Avg. Sw 33%</td>
<td>Avg. Sw 24.6%</td>
</tr>
<tr>
<td></td>
<td>Permeability 0.1-2.5mD</td>
<td>Permeability 0.05-1.36mD</td>
<td>Permeability 0.02-2.0mD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High shale volume in reservoir</td>
<td>High shale volume in bioturbated</td>
</tr>
<tr>
<td>DRILLING</td>
<td>Lateral drilling days 5.2</td>
<td>Lateral drilling days 3.9</td>
<td>Lateral drilling days 4.7</td>
</tr>
<tr>
<td></td>
<td>16% average sliding in lateral</td>
<td>8% average sliding in lateral</td>
<td>12% average sliding in lateral</td>
</tr>
<tr>
<td></td>
<td>1.7 bits to drill lateral</td>
<td>Lateral drilled with one bit</td>
<td>1.5 bits to drill lateral</td>
</tr>
<tr>
<td>COMPLETIONS</td>
<td>Higher treating pressures (>50MPa)</td>
<td>Low treating pressures (45-50MPa)</td>
<td>Low treating pressures (35-45MPa)</td>
</tr>
<tr>
<td></td>
<td>Lowest pump rates (5-6m3/min)</td>
<td>High pump rates (7-9m3/min).</td>
<td>High pump rates (7-9m3/min).</td>
</tr>
<tr>
<td></td>
<td>Scours commonly be required</td>
<td>Rarely requires scour</td>
<td>Rarely requires scour</td>
</tr>
<tr>
<td></td>
<td>High risk of screen outs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRODUCTION & ECONOMICS</td>
<td>Thick bedded sandstone highest oil cum. over time</td>
<td>Lowest overall cumulative production offset by more efficient drill and completions</td>
<td>Highest IP rates highest reservoir pressures</td>
</tr>
</tbody>
</table>
ACKNOWLEDGEMENTS

- LIGHTSTREAM RESOURCES
- DON KEITH
- BRUCE STANDING
- MARLON RAY
- DALE SHIPMAN