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Abstract

The Mississippian Cypress Sandstone is the most prolific oil reservoir in the Illinois Basin (ILB). A fairway of thick Cypress Sandstone that can exceed
46 m was deposited in an incised valley system in the ILB. In some places, these thick sandstones contain oil reservoirs in the top with the potential for an
underlying residual oil zone (ROZ). These reservoirs typically have low primary recovery due to excessive water coning and are an under produced
resource in the ILB. Nonconventional carbon dioxide (CO;) enhanced oil recovery (EOR) in such reservoirs provides economic incentive to mitigate CO,
emissions by storing rather than recycling CO, compared to conventional CO,-EOR programs. This research focuses on quantifying the thick Cypress
Sandstone CO,-EOR and storage resource in the ILB. Reservoir characterization using core and analogous outcrop data and analysis of open-hole
geophysical logs of varying types and ages to identify the presence of ROZs are underway. If ROZs are present, the mechanism for their emplacement
and the geologic characteristics of the formation must be understood so the distribution of ROZs can be predicted. Regional geologic characterization
indicates that the thick Cypress Sandstone occurs as multistory fluvial sandstone bodies that become estuarine upward and were deposited in an
accommodation limited setting. Marine incursions punctuate the fluvial sandstones with implications for reservoir quality, as marine beds create laterally
continuous baffles to vertical fluid flow. Areas with the highest potential for CO,-EOR and storage occur where multiple sandstone bodies amalgamate
and limit the thickness of the intervening marine strata while facilitating enhanced stratigraphic trapping due to differential compaction over the thick
sandstones. Open-hole log analyses are being assessed to determine whether ROZs are present with early results showing oil saturation trends within the
thick Cypress Sandstone indicative of ROZs. These methods are being refined to provide more confidence of the presence ROZs, with efforts being taken
to collect cased-hole pulsed neutron logs and new core to validate open-hole log analyses. Methods developed here could be applied broadly, as
analogous thick sandstones with oil reservoirs and potential ROZs are common in other Carboniferous strata in the ILB and likely in similar settings.
Such regional resource assessments may provide industry with information needed to initiate CO,-EOR in the ILB.
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Abstract

The Mississippian Cypress Sandstone is the most prolific oil reservoir in the
lllinois Basin (ILB). A fairway of thick Cypress Sandstone that can exceed 46 m
was deposited in an incised valley system in the ILB. In some places, these thick
sandstones contain oil reservoirs in the top with the potential for an underlying
residual oil zone (ROZ). These reservoirs typically have low primary recovery
due to excessive water coning and are an under produced resource in the ILB.
Nonconventional carbon dioxide (CO,) enhanced oil recovery (EOR) in such
reservoirs provides economic incentive to mitigate CO, emissions by storing rather
than recycling CO, compared to conventional CO,-EOR programs.

This research focuses on quantifying the thick Cypress Sandstone CO,-

EOR and storage resource in the ILB. Reservoir characterization using core and
analogous outcrop data and analysis of open-hole geophysical logs of varying
types and ages to identify the presence of ROZs are underway. If ROZs are
present, the mechanism for their emplacement and the geologic characteristics of
formation must be understood so the distribution of ROZs can be predicted.

Regional geologic characterization indicates that the thick Cypress Sandstone
occurs as multistory fluvial sandstones that become estuarine upward and were
deposited in an accommodation limited setting. Marine incursions punctuate the
fluvial sandstones with implications for reservoir quality, as marine beds create
laterally continuous baffles to vertical fluid flow. Areas with the highest potential
for CO,-EOR and storage occur where multiple sandstone bodies amalgamate
and limit the thickness of the intervening marine strata while facilitating enhanced
stratigraphic trapping due to differential compaction over the thick sandstones.
Open-hole log analyses are being assessed to determine whether ROZs are
present with early results showing oil saturation trends within the thick Cypress
Sandstone indicative of ROZs. These methods are being refined to provide more
confidence of the presence ROZs, with efforts being taken to collect cased-hole
pulsed neutron logs and new core to validate open-hole log analyses.

Methods developed here could be applied broadly, as analogous thick
sandstones with oil reservoirs and potential ROZs are common in other
Carboniferous strata in the ILB and likely in similar settings. Such regional
resource assessments may provide industry with information needed to initiate
CO,-EORin the ILB.

Motivation

Determine potential for net carbon negative oil (NCNO)

production via CO,-EOR and geologic storage

* Obijectives of this four-year study include
¢ Characterizing geology of CO_-EOR target formation
¢ ldentifying ROZs by looking for direct (oil saturation
profiles from core or log analysis) and indirect (tilted
oil/water contact, relatively fresh water, different oil
composition) indicators
¢ Developing a CO,-EOR/storage strategy for the
regional resource based on detailed case studies

Background and Study Area

Cypress Sandstone

» Multiple facies in the lllinois Basin (Below)
* Production commonly from sandstone lenses
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» Thick Cypress Sandstone reservoirs are an under

produced resource

0 Water coning issues during production
* Noble Field is the best example of a thick Cypress
reservoir in the Basin and provides a good case
study for future expansion to regional assessment
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0 Mobile oil above thick (100+ feet) brine aquifers * EOR with high net CO, utilization

» Saline storage potential of 3.5 to
40.2 Tcf (0.2 to 2.3 Gt) of CO, in
the lllinois Basin (DOE/MGSC,

2012)

Above - Generalized
stratigraphic column of Noble
Field showing the Cypress
Sandstone

Geologic Setting and History of Noble Field

Noble Field Location

* Discovered in 1937

» Part of Clay City Consolidated Field

* Relatively few areas of the Basin where thick
Cypress Sandstone is a prolific producer; Noble Field
is the best example
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Above is a graph of cumulative (blue line) and annual
(orange line) production data for all formations and all leases
in Noble Field over the entire history of the field. The Cypress
Sandstone accounts for approximately 50% of the total
cumulative production. Field has produced >45 MMBO~24
MMBO (~50%) from thick Cypress Sandstone

Structure map (Left) contoured on the base of the Barlow
Limestone shows the NE-SW trending Clay City anticline on
which Noble Field is situated.

Annual Producion (Bbls oil)

Methods

To better understand and assess the regional resource, a detailed
case study was conducted concentrating on:

¢ Geologic Characterization

¢ Petrophysics

¢ Geocellular modeling

Leveraging this multidisciplinary approach will allow for a better
understanding of the petroleum system and will aid in assessing
the regional resource.

Create a conceptual geologic model by characterizing
depositional and diagentic facies to better
understand petrophysical properties of the rock

Use logs to quantify oil
saturation and determine oil

Used to better saturation profiles

Geologic Characterization

understand log response

P

Petrophysics

Structural surfaces and
isopachs bound model.
Understanding of the
depositional and diagenetic
features aids in identifying
interwell characteristics and
small scale features

Fluid saturation data to
better estimate initial
conditions

Geocellular Modeling

Numerical models that reflect geologic heterogeneity in petrophysical
properties and can be populated with fluid saturation data. Models are

calibrated to production data and used for reservoir simulation of CO2-EOR and

storage scenarios
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Geological Model (Below)
« Basal sandstone blankets entire field and reportedly covers much of the nearby counties; indicates low accommodation
» Middle and upper sandstone stories amalgamate at Noble Field but are less persistent elsewhere

¢ Top of thick Cypress Ss is convex upward where amalgamated

¢ Differential compaction over amalgamated sandstones create stratigraphic oil traps
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Geocellular Model

The geocellular model is designed to reflect

0.25

* Left: NSP cross

10000

the internal architecture of the reservoir

plotted and regressed

0.2

Geostatistical analysis of core-calibrated
geophysical log data allows interpolation of
porosity and permeability between wells

385 Normalized SP (NSP) logs
¢ Dense coverage, lower resolution/quality
¢ Sandstone/shale ratio
¢ Lithofacies model
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¢ Less coverage, higher resolution/ quality
¢ Detects porosity variations within
sandstone

0 Diagenetic model

10 20 30 40 50

Normalized SP

60 70

SP Log Model Results

« Each cell is assigned a NSP value

» Data supports results of geologic conceptual model
¢ Consistent sand throughout middle with more shale in
the top and base

« SP cannot detect the calcite cemented zones found in core

« Two parallel layers of ca
¢ One at the oil/water
oil-water contact?)
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Geocellular Model
« SP and neutron-density log based models were combined
to incorporate depositional and diagenetic facies
¢ Shaly, estuarine facies at the top of the model
¢ Thin shale interbeds
0 Low porosity calcite-cemented sandstone zones
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contact and one below it (paleo

X (km)
1025

Porosity

1023 1024 1026 1027 1028 X (km)

(L 1023 1024 1025 1026 1027 1028
L

0.22
0.20
0.18
0.16
0.14
0.12

(.-;1,“

623

0.10

0.10

-675

-

633

-725

0.08
0.06

63
l[])_s i 61'3
Geocellular porosity model at Noble Field. Created from SP

)
and ND logs. Roughly 0.5 x 0.5 mi., 50x vertic_%l exaggeration. (Lo

632

1022

1023

0.08
0.06

=700

=125

1024 1025

X (km)

1026 1027 1028

1022 1023 1024 1025

X (km)

1026 1027 1028

Findings and Implications

Noble Field is a microcosm of the regional nonconventional CO,-EOR resource of the
thick Cypress Sandstone

¢ Abundant oil production and sound geologic interpretation provide confidence in

modeling results and information for better understanding the regional resource
Noble Field has thickest known oil column and <25% recovery efficiency, highlighting
the potential for CO,-EOR
Indications of an ROZ has implications for the regional nonconventional CO,-EOR
target

¢ QOil/water contact is tilted towards the south

¢ Petrophysical analysis indicates possible ROZ

¢ Calcite cement below oil/water contact may represent paleo-oil/water contact
Integrating geologic characterization, petrophysics, and geocellular modeling leads to
a better overall interpretation

Future Work

» Fingerprint oil to its source to understand migration into the reservoir
¢ Understanding the mechanism for ROZ formation to predict where they occur
Investigate calcite cemented zones and relationship to oil/water contact
¢ Indications of paleo-oil/water contact? Evidence for ROZ?
Coring and cased hole logging to validate petrophysical results
Simulate production history to determine the most effective CO,-EOR and storage method
¢ Scenarios weighted towards oil production and storage
¢ Potential to produce net carbon negative oil (NCNO)
Map thick Cypress Sandstone at regional scale
¢ ldentify locations with oil reservoirs and possible ROZs analogous to Noble Field
Estimate regional resource using results from Noble Field case study and reservoir simulation
¢ Better understanding of the geology of the thick Cypress Sandstone
Refine algorithm for identifying ROZs
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