Petroleum Potential of the Gage Submarine Fan, Offshore Perth Basin, Western Australia from Palaeogeographic Mapping and Geological Modelling*

Megan E. Lech1, Diane C. Jorgensen1, Chris Southby1, Liuqi Wang1, Victor Nguyen1, Irina Borissova1, and David Lescinsky1

Search and Discovery Article #10826 (2016)**
Posted January 25, 2016

*Adapted from oral presentation given at AAPG/SEG International Conference & Exhibition, Melbourne, Australia, September 13-16, 2015
**© Commonwealth of Australia (Geoscience Australia) 2016. With the exception of the Commonwealth Coat of Arms and where otherwise noted, this product is provided under a Creative Commons Attribution 4.0 International Licence. http://creativecommons.org/licenses/by/4.0/legalcode

1Geoscience Australia, Canberra, ACT, Australia (megan.lech@ga.gov.au)

Abstract

The Vlaming Sub-basin is north-south trending Mesozoic depocentre in the Perth Basin, Western Australia that contains up to 14 km of sediment. Potential plays comprise the Early Cretaceous Gage Sandstone overlain by the South Perth Shale seal. Previous exploration primarily focused on structural traps in the syn-rift succession based on the assumption that all hydrocarbons were generated prior to or at the time of the breakup. Petroleum systems modelling undertaken by others in 2007 concluded that some source rocks in the sub-basin reached maturity after the deposition of the South Perth Shale seal, therefore making plays in the post-breakup Gage reservoir prospective. Deposited as a lowstand component of the deltaic South Perth Supersequence, the Gage Lowstand Fan (previously referred to as the Gage Sandstone) infilled palaeotopographic lows on the Valanginian breakup unconformity. Characteristics of the reservoir-seal pair were derived from sequence-stratigraphic analysis and seismic facies mapping that integrated 2D seismic interpretation, well log analysis and new biostratigraphic data. Palaeogeographic reconstructions for the South Perth Supersequence reveal a series of regressions and transgressions that infill palaeodepressions. The Gage reservoir is a sand-rich submarine fan system and ranges from canyon-confined inner fan deposits to middle fan deposits on a basin plain. Sand sheets in the distal middle fan and stacked channelised sands in the inner fan may provide an extensive reservoir of good to excellent quality. Seal quality of the South Perth Shale varies across the basin and may account for some dry wells. A re-evaluation of the regional seal determined the extent of the pro-delta shale facies within the South Perth Supersequence, which provides an effective seal for the underlying Gage reservoir. 3D geological modelling provided a better understanding of the reservoir heterogeneity by predicting changes to lithofacies and reservoir parameters away from the well. Flow path analysis identified multiple stratigraphic closures at the top of the Gage reservoir, with the most favourable located in the Rottnest Trough.

References Cited

Petroleum potential of the Gage submarine fan, offshore Perth Basin, Western Australia from palaeogeographic mapping and geological modelling

Megan E. Lech, Diane C. Jorgensen, Chris Southby, Liuqi Wang, Victor Nguyen, Irina Borissova and David Lescinsky
Aim

To provide a better understanding of the distribution of the quality reservoir and seal facies of the post-Valanginian breakup succession by:

1. Defining a new chronostratigraphic sequence framework for the post-rift Warnbro Group,

2. Better understanding the evolution of the South Perth Supersequence delta,

3. Identifying the location of the effective (good quality seal),

4. Mapping internal geometries of the Gage reservoir to identify the location of the enhanced reservoir properties, and

5. Identify location of potential exploration targets.
- Offshore/onshore Mesozoic depocentre
- Up to 15 km of Jurassic to E. Cretaceous sediments
- Several proven and potential source rocks
- Active petroleum system
- Gage Roads 1: sub-commercial oil accumulation, Marri 1: gas show
- Previous prospectivity assessments had syn-rift focus
- Currently no exploration
Effective seal
Gage reservoir
Potential hydrocarbon traps

(modified from Nicholson et al., 2008)
Work flow

19 Wells
- Biostratigraphy
- Lithological interpretations
- Wireline logs
- Petrophysics
- GOI/FIS

Seismic facies mapping → Environments of deposition

Sequence stratigraphy

3D geological modelling

Flow path modelling

Seismic
- 2D: >10,000 line km
- Catalina 3D

Marine Survey
- Swath bathymetry
- Chirpa
- Seepage
Gage reservoir model: deep-water submarine fan

Modified from Richards et al., (1998)
Break-up palaeotopography

- Gage reservoir deposited directly on the Valanginian Unconformity

- Bounded by:
 - Badaminna Fault Zone,
 - shallow basement on Vasse & Yallingup shelves,
 - Edwards Island Block
Relationship of reservoir and seal

- Gage reservoir
- Charlotte reservoir
- Effective seal
- Leederville Supersequence boundary
- Top effective seal
- Top Gage lowstand fan
- Valanginian Unconformity
- Charlotte Supersequence boundary
Fluid inclusion results – how good is the seal?

- FIS results indicate seal is major contributor to exploration failure:
 - Good seal at Gage Roads 1, 2 & Marri 1
 - No seal at Bouvard 1 and Parmelia 1
 - Possible seal breach by fault reactivation at Warnbro 1 & Peel 1
 - Suspected seal breach at Charlotte 1 & Mullaloo 1 – not possible to map reactivated faults due to seismic anomalies

- Better understanding of seal is critical
Chronostratigraphic chart

- **Age (Ma)**: 131, 132, 133, 134, 135, 136, 137
- **System tract**: HST, MFS, TST
- **Sequences**: South Perth Sequence 1, 2, 3
- **Good seismic coverage**
- **Schematic**

Legend:
- Deltaic shallow marine
- Pro-delta
- Lowstand fan
- Sequence boundary (SB)
- Maximum flooding surface (MFS)
- Transgressive surface (TS)
- Unconformity
Evolution of the South Perth Supersequence delta

Sequence 1 / Sequence 2 LST
Evolution of the South Perth Supersequence delta

Sequence 2 TST

- Proximal delta front
- Delta front
- Pro-delta
- Delta plain
- Basin plain
- Lowstand fan
- Land

Gage Lowstand Fan
Effective Seal
Valanginian Unc
Evolution of the South Perth Supersequence delta

Sequence 3 HST

- Proximal delta front
- Delta front
- Pro-delta
- Delta plain
- Basin plain
- Lowstand fan
- Land
- Gage Lowstand Fan
- Effective Seal
- Valanginian Unc
Depositional environments – Gage reservoir

Depositional environment
- Inner Fan (canyon)
- Distal Middle Fan
- Inner Fan (rise)
- Inner Fan (dissected terrain)
- Proximal Middle Fan
- Slump

Sediment flow direction
- Major flow
- Major flow (inferred)
- Minor flow

AAPG | SEG 2015 International Conference & Exhibition, 13-16 September 2015
Gage depositional environment: seismic characteristics

INNER FAN

- Continuous, semi-continuous
- Variable amplitude
- Prograding
- Downlaps onto underlying unit
Gage depositional environment: seismic characteristics

INNER FAN (DISSECTED)

- Dominantly continuous
- Med-high amplitude
- Prograding / lateral accretion
- Downlap onto underlying unit.

Depositional environment

- Inner fan (canyon)
 (Unit A and B)
- Inner fan (rise)
 (Unit B and C)
- Proximal middle fan
 (Unit A, B and C)
- Distal middle fan
 (Unit B and C)
- Inner fan (dissected terrain)
 (Unit C)
- Slump (Unit C)
Gage depositional environment: seismic characteristics

PROXIMAL MIDDLE FAN

- Dominantly discontinuous
- Variable amplitude
- Prograding
- Downlap onto underlying unit

Depositional environment

- Inner fan (canyon) (Unit A and B)
- Inner fan (rise) (Unit B and C)
- Proximal middle fan (Unit A, B and C)
- Distal middle fan (Unit B and C)
- Inner fan (dissected terrain) (Unit C)
- Slump (Unit C)
Gage depositional environment: seismic characteristics

DISTAL MIDDLE FAN

- Continuous reflectors
- Sheet-like
- Variable amplitude
- Prograding

Depositional environment:
- **Inner fan (canyon)** (Unit A and B)
- **Inner fan (rise)** (Unit B and C)
- **Proximal middle fan** (Unit A, B and C)
- **Distal middle fan** (Unit B and C)
- **Inner fan (dissected terrain)** (Unit C)
- **Slump** (Unit C)
Gage depositional environment: seismic characteristics

SLUMP

- Discontinuous reflectors
- Low-mod amplitude
- Chaotic

Depositional environment:
- Inner fan (canyon) (Unit A and B)
- Inner fan (rise) (Unit B and C)
- Proximal middle fan (Unit A, B and C)
- Distal middle fan (Unit B and C)
- Inner fan (dissected terrain) (Unit C)
- Slump (Unit C)
Depositional environments: reservoir characteristics

<table>
<thead>
<tr>
<th>Slump</th>
<th>Distal middle fan</th>
<th>Proximal middle fan</th>
<th>Canyon-confined inner fan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chaotic bedding, over compaction, lateral pinchouts</td>
<td>Non-channelised depositional lobe, sheet-like sand bodies, well sorted with high porosity</td>
<td>Transition zone with channels & suprafan lobe deposits</td>
<td>Stacked sand bodies in turbidity current & debris flow deposits</td>
</tr>
<tr>
<td>Highly variable, poor to fair sand body connectivity</td>
<td>good lateral & moderate vertical connectivity</td>
<td>good lateral & good-moderate vertical connectivity</td>
<td>excellent vertical communication; low lateral connectivity</td>
</tr>
<tr>
<td>poor reservoir properties</td>
<td>good reservoir properties</td>
<td>good to excellent reservoir properties</td>
<td>excellent reservoir properties</td>
</tr>
</tbody>
</table>

Increasing reservoir quality/certainty
Neumann et al., 2007

- Potential source rocks from Permian to E. Cretaceous
- Yarragadee Fm = best developed, most regionally extensive
- Hydrocarbon generation continued after deposition of effective seal
- Small amounts continued to generate throughout the Cenozoic
- Syn-rift faults active post breakup may create secondary accumulations in Gage reservoir
- Preservation of accumulations depends on the present-day seal integrity
Isochore thickness of reservoir & effective seal

Figure 9a

Figure 9b

- Gage reservoir extent
- Seismic section figure location
- Isochore thickness (depth in metres)
- Petroleum exploration well
Core porosity = 9.5-23.9%, permeability from 0.124 to 1340 mD

Mostly good to excellent reservoir properties

Gage reservoir laterally heterogeneous

Upper reaches of canyons:
 - least favourable reservoir qualities
 - correspond to thinner effective seal
Flow path analysis

- Migration pathways (red) and structural closures (green)
- Multiple structural & stratigraphic closures at the top of Gage reservoir
- Most prospective structural closures in Rottnest Trough (large closures, away from faults)
- Stratigraphic pinch-outs onto Valanginian Unconformity (Roe High, Sugarloaf Trough, BFZ)
Risk - Reactivated faults & thief zones

- Fault movement (and minor reactivation) continued after Valanginian. Do they jeopardise seal integrity?
- Could Charlotte reservoir act as thief zone?
Summary

- New understanding of the Vlaming Sub-basin post-rift succession (based on an integrated sequence stratigraphic analysis of well and seismic data)
- Better age control
- Better understanding of variations in depositional facies within main lithostratigraphic units
- Better understanding of spatial distribution of quality reservoir and seal
Conclusions

• Prospective reservoir-seal pair – not primary focus of previous exploration
• Plays: Post-breakup pinch-outs against the Valanginian Unconformity & anticlinal closures
• Regional seal re-evaluation indicate the pro-delta shale facies of South Perth Supersequence provides an effective seal for the underlying Gage reservoir
• Sand sheets in the distal middle fan and stacked channelised sands in the inner fan may provide an extensive reservoir
• Modelling predicts:
 • good-excellent reservoir properties suitable for hydrocarbon entrapment
 • multiple viable exploration targets, esp. in Rottnest Trough
• Deep-seated faults, penetrating the syn-rift section, are in direct contact with the Gage reservoir and it could be actively receiving hydrocarbon charge