The Cause of Gas Saturation in the Coals of the Cherokee Formation (Desmoinesian Age) in the Cherokee and Forest City Basins, Mid-Continent, USA*

Steven A. Tedesco¹

Search and Discovery Article #80490 (2015)
Posted November 9, 2015

*Adapted from oral presentation given at AAPG Annual Convention & Exhibition, Denver, Colorado, May 31-June 3, 2015
**Datapages © 2015 Serial rights given by author. For all other rights contact author directly.

¹Running Foxes Petroleum Inc., Greenwood Village, Colorado (steven.a.tedesco11@atoka.com)

Abstract

The cause of significant gas saturation in Pennsylvanian age coals and carbonaceous shale of the Cherokee Group, Cherokee and Forest City basins has been generally not well understood. Some coals are gas productive whereas others within the same strata are not. The Cherokee and Forest City basins are shallow intracratonic depressions that are sub-basins of the Pennsylvanian age Western Interior Basin. The coals in both basins were partially or completely subject to thermal maturation caused by migration of low temperature hydrothermal fluids expelled from the Anadarko, Ardmore and Arkoma basins in Oklahoma to the south that migrated north through the Cherokee and Forest City basins in late Carboniferous times. These fluids thermally altered the carbonaceous shale and coals within select areas of both basins causing significant gas generation. In both basins select seams are more highly gas saturated due to higher sulfur content in productive versus non-productive coals. The Riverton, Rowe, Weir-Pittsburg and Mulky coals and the Excello shale are gas productive in the Cherokee Basin. Only the Riverton coals in the Forest City Basin are productive. The area of primary production from unconventional reservoirs in the Cherokee Basin is also situated over the Silurian-Devonian age Chautauqua Arch. The coal bed methane production in the Forest City Basin is related to a localized intrusion(s) in the Leavenworth and Jefferson county area. Identifying the relationship between sedimentary thins, structural elements, timing of fluid migration, migration paths and sulfur contents of unconventional reservoirs provide an exploration model that can be useful in identifying potentially coal bed methane productive areas.

References Cited

The Cause of Gas Saturation in the Coals of the Cherokee Formation (Desmoinesian Age) in the Cherokee and Forest City Basins, Mid-Continent, USA

By: Dr. Steven A. Tedesco
Running Foxes Petroleum Inc.
Centennial, CO 80112
(720) 889-0510
www.runningfoxes.com
Abstract

The cause of significant gas saturation in Pennsylvanian age coals and carbonaceous shale of the Cherokee Group, Cherokee and Forest City basins has been generally not well understood. Some coals are gas productive whereas others within the same strata are not. The Cherokee and Forest City basins are shallow intracratonic depressions that are sub-basins of the Pennsylvanian age Western Interior Basin. The coals in both basins were partially or completely subject to thermal maturation caused by migration of low temperature hydrothermal fluids expelled from the Anadarko, Ardmore and Arkoma basins in Oklahoma to the south that migrated north through the Cherokee and Forest City basins in late Carboniferous times. These fluids thermally altered the carbonaceous shale and coals within select areas of both basins causing significant gas generation. In both basins select seams are more highly gas saturated due to higher sulfur content in productive versus non-productive coals. The Riverton, Rowe, Weir-Pittsburg and Mulky coals and the Excello shale are gas productive in the Cherokee Basin. Only the Riverton coals in the Forest City Basin are productive. The area of primary production from unconventional reservoirs in the Cherokee Basin is also situated over the Silurian-Devonian age Chautauqua Arch. The coal bed methane production in the Forest City Basin is related to a localized intrusion(s) in the Leavenworth and Jefferson county area. Identifying the relationship between sedimentary thins, structural elements, timing of fluid migration, migration paths and sulfur contents of unconventional reservoirs provide an exploration model that can be useful in identifying potentially coal bed methane productive areas.
Location of the Cherokee Basin

Promap, 2012
Coals found in the Cherokee Group

- Depths - surface to 2,600 feet
- High sulfur coals
- Rank - High Volatile A Bituminous coal
- Coals contain thin ash lamination – 5 to 50%

Tedesco, 2014
Cumulative Production up to 2011

Tedesco, 2014
Depth of Burial Problem

• Cherokee and Forest City basins presently have maximum depth of 4,000 feet;
• Maximum depth of burial for both basins is 6,000 feet;
• Coal rank is High volatile B to Medium Volatile (oil window);
• Chattanooga-Woodford Shale is in the oil window;

• Problem: how did the coals and gas shales become thermally altered sufficiently to produce gas?
Pre-Chattanooga Shale Paleogeography

- Erosional surface across the Chautauqua Arch late Devonian

Tedesco, 2014

Adler et al., 1971
Stage 2 – Deposition of the Chattanooga – Woodford Shale

- Submerging of the Chautauqua Arch;
- Nemaha Ridge remains exposed.

Conant and Swanson, 1963

Tedesco, 2014
Deposition of Mississippian sediments

Tedesco, 2014
Erosion and Subaerial Exposure of Mississippian Sediments

Late Mississippian - Early Pennsylvanian

(Future Forest City Basin)

(Future Cherokee Basin)

Chautauqua Arch

Tedesco, 2014
Pre-Pennsylvanian Thickness of Paleozoic Rocks
• Deposition of Morrow sediments in the Forest City;
• Deposition of Atokan sediments across both basins;
• Deposition of Desmoinesian sediments across the Forest City southward through the Cherokee Basin into the Arkoma Basin.
Cherokee Basin in relation to the Ouachita – Marathon Orogeny

Tedesco, 2014
Compression, Expulsion and Migration of Low Temperature Hydrothermal Fluids

Tedesco, 2014
Migration of Low Temperature Hydrothermal Fluids

Davies and Smith (2006)
Migration of Low Temperature Hydrothermal Fluids

Gerhard, 2004

Adler et al., 1971 and Tedesco, 2014
Petroleum and Base Metal Deposits in the Western Interior Basin (Pennsylvanian)

Tedesco, 2014
Coal and Shale Gas Production

Adler et al., 1971 and Tedesco, 2014
Summary

• Sequence of Events
• Development of the Chautauqua Arch, thinning of Pre-Chattanooga-Woodford rocks pre late Devonian – Early Mississippian;
• Deposition of Pennsylvanian Atokan and Desmoinesian;
• In late Pennsylvanian to Permian times the Ouachita-Marathon Orogeny occurred driving low temperature fluids northward into the Cherokee and Forest City basins;
• These fluids thermally altered the coals and carbonaceous shales that resulted in gas generation in the center and isolated structural features within the Cherokee Basin.