PS Anthropogenic CO₂ for Enhanced Oil Recovery: An Under-Utilized Resource for Greener Fuels*

Gerald C. Blount¹ and Mary K. Harris²

Search and Discovery Article #80471 (2015)**
Posted August 24, 2015

Abstract

World oil basins have the potential to recover over 1 trillion barrels of oil with enhanced oil recovery (EOR) using CO₂ from known and undiscovered oil in place (Godec et al. 2011). The ability to recover these oil reserves is limited by the availability of CO₂ resources. At 1.5 barrels of oil produced/metric ton of CO₂, the required CO₂ for EOR in all basins would be over 700 billion metric tons. Assuming the recovery took 100 years, the market demand for CO₂ could be over 7 billion metric tons/year. Atmospheric anthropogenic CO₂ releases in 2011 were \sim 31.3 billion metric tons; stationary electricity and industrial sources of CO₂ totaled \sim 14.5 billion metric tons (IEA, 2013). This suggests that there is likely enough man-made CO₂ available for potential world demand. CO₂ used in EOR is typically of geologic origin, of relatively high purity (~95% CO₂), and sells for between 2% to 3% of the value of a barrel of recovered oil per 1000 ft3 of gas (Permian Basin of west Texas). This equates to ~\$32US to ~\$48US per delivered metric ton (crude oil valued at \$85US/barrel). Most methods of CO₂ capture from industrial sources cost over \$50US per metric ton prior to compression and transport; compression and pipeline costs represent an additional cost of ~\$15US per ton. Lower cost methods of CO₂ capture are needed for widespread use of CO₂ in EOR. CO₂ is commonly recognized to have the potential to recover an additional 15 to 20% of original oil in place, with oil production ranging from 1–3 barrels/metric ton of CO₂ lost to the reservoir. The long-term oil recovery potential of CO₂ is not well understood because of the lack of low cost CO₂ for flooding. CO₂ flooding is common in the Permian Basin due to the nearby geologic CO₂ sources. CO₂ is typically only effective in recovering medium and light crude oil. Medium and light oil produced at rates of less than 2.0 to 2.8 barrels respectively; per metric tons lost are likely CO₂ negative. CO₂ negative is when it takes more CO₂ to recover the oil than it will produce upon combustion. Negativity can be calculated based upon oil density, carbon content, conversion of carbon to CO₂, and the comparison of combustion produced CO₂ to lost CO₂. Crude oil is variable but a general understanding of the negativity of EOR with CO₂ can be developed. The use of man-made CO₂ for oil recovery offers the potential for greener fuels.

Reference Cited

Godec, M., v. Kuuskraa, T.V. Leeuwen, L.S. Melzer, and N. Wildgust, 2011, CO₂ storage in depleted oil fields: The worldwide potential for carbon dioxide enhanced oil recovery: Energy Procedia, 10th International Conference on Greenhouse Gas Control Technologies, v. 2011, p. 2162–2169, Web Accessed, August 8, 2015, http://www.sciencedirect.com/science/article/pii/S1876610211002992.

^{*}Adapted from poster presentation given at AAPG 2015 Annual Convention and Exhibition, Denver, Colorado, May 31 – June 3, 2015

^{**}Datapages © 2015 Serial rights given by author. For all other rights contact author directly.

¹Savannah River Nuclear Solutions, Aiken, South Carolina, USA (gerald.blount@srs.gov)

²Savannah River National Laboratory, Aiken, South Carolina, USA

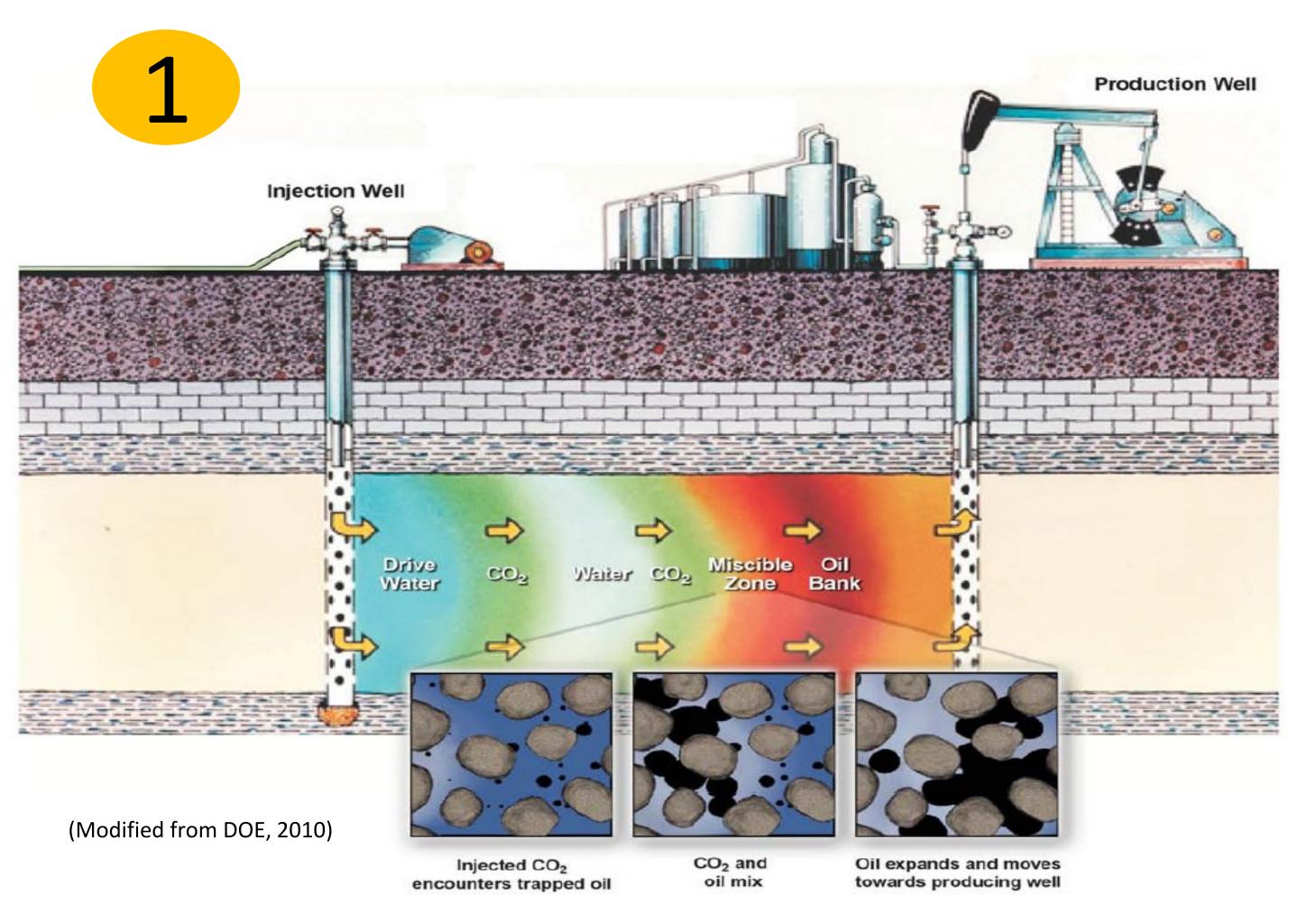
Anthropogenic CO₂ for Enhanced Oil Recovery: An Under-Utilized Resource for Greener Fuels

Gerald C. Blount and Mary K. Harris

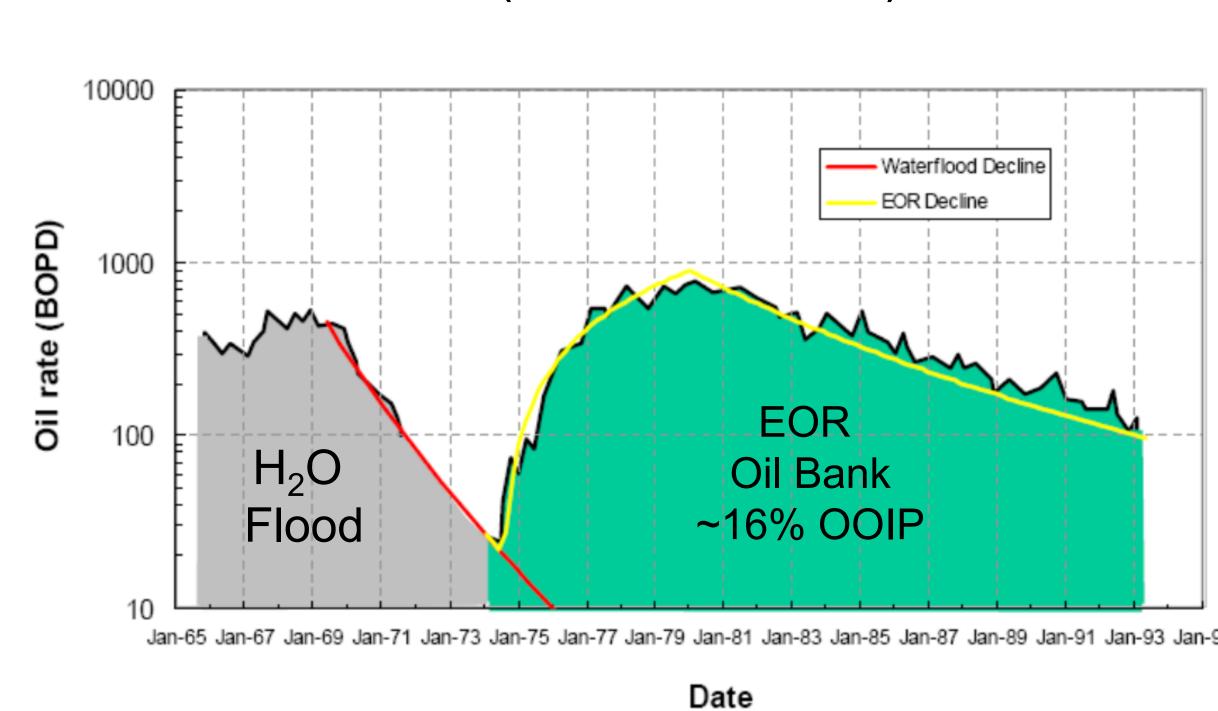
Abstract

Anthropogenic CO2 for Enhanced Oil Recovery: An Under-Utilized Resource for Greener Fuels

Gerald C. Blount1, Mary K. Harris2


- 1. Savannah River Nuclear Solutions, Aiken, SC. United States.
- 2. Savannah River National Laboratory, Aiken, SC. United States

World oil basins have the potential to recover over 1 trillion barrels of oil with enhanced oil recovery (EOR) using CO2 from known and undiscovered oil in place (Godec et al, 2011). The ability to recover these oil reserves is limited by the availability of CO2 resources. At 1.5 barrels of oil produced/metric ton of CO2, the required CO2 for EOR in all basins would be over 700 billion metric tons. Assuming the recovery took 100 years, the market demand for CO2 could be over 7 billion metric tons/year. Atmospheric anthropogenic CO2 releases in 2011 were ~31.3 billion metric tons; stationary electricity and industrial sources of CO2 totaled ~14.5 billion metric tons (IEA, 2013). This suggests that there is likely enough man-made CO2 available for potential world demand.


CO2 used in EOR is typically of geologic origin, of relatively high purity (~95% CO2), and sells for between 2% to 3% of the value of a barrel of recovered oil per 1000 ft3 of gas (Permian Basin of west Texas). This equates to ~\$32 to ~\$48 per delivered metric ton (crude oil valued at \$85/barrel). Most methods of CO2 capture from industrial sources cost over \$50 per metric ton prior to compression and transport; compression and pipeline costs represent an additional cost of ~\$15 per ton. Lower cost methods of CO2 capture are needed for widespread use of CO2 in EOR. CO2 is commonly recognized to have the potential to recover an additional 15 to 20% of original oil in place, with oil production ranging from 1-3 barrels/metric ton of CO2 lost to the reservoir. The long-term oil recovery potential of CO2 is not well understood because of the lack of low cost CO2 for flooding. CO2 flooding is common in the Permian Basin due to the nearby geologic CO2 sources.

CO2 is typically only effective in recovering medium and light crude oil. Medium and light oil produced at rates of less than 2.0 to 2.8 barrels respectively; per metric tons lost are likely CO2 negative. CO2 negative is when it takes more CO2 to recover the oil than it will produce upon combustion. Negativity can be calculated based upon oil density, carbon content, conversion of carbon to CO2, and the comparison of combustion produced CO2 to lost CO2. Crude oil is variable but a general understanding of the negativity of EOR with CO2 can be developed. The use of manmade CO2 for oil recovery offers the potential for greener fuels.

What is Enhanced Oil Recovery (EOR) with CO₂?

Modified from Lake and Walsh, 2008

2

Recoverable Oil Volume?

Region	CO ₂ -EOR Oil Recovery (Billion Barrels)	CO ₂ Storage Capacity (Billion Metric Tons)
1. Asia Pacific	47	13
2. C. & S. America	93	27
3. Europe	41	12
4. FSU	232	66
5. M. East/N. Africa	595	170
6. NA/Other	38	11
7. NA/U.S.	177	51
8. S. Africa/Antarctica	74	21
TOTAL	1,297	370

Includes potential from discovered and undiscovered fields, but not future growth of discovered fields.
 Source: IEA GHG Programme/Advanced Resources International (2009)

The worlds oil basins* have the potential to recover over 1 trillion barrels of oil with EOR using CO_2 (Godec et al, 2011; Godec 2013). The ability to recover this oil is limited by the availability of CO_2 .

Oil Recovered Per Metric Ton of CO₂

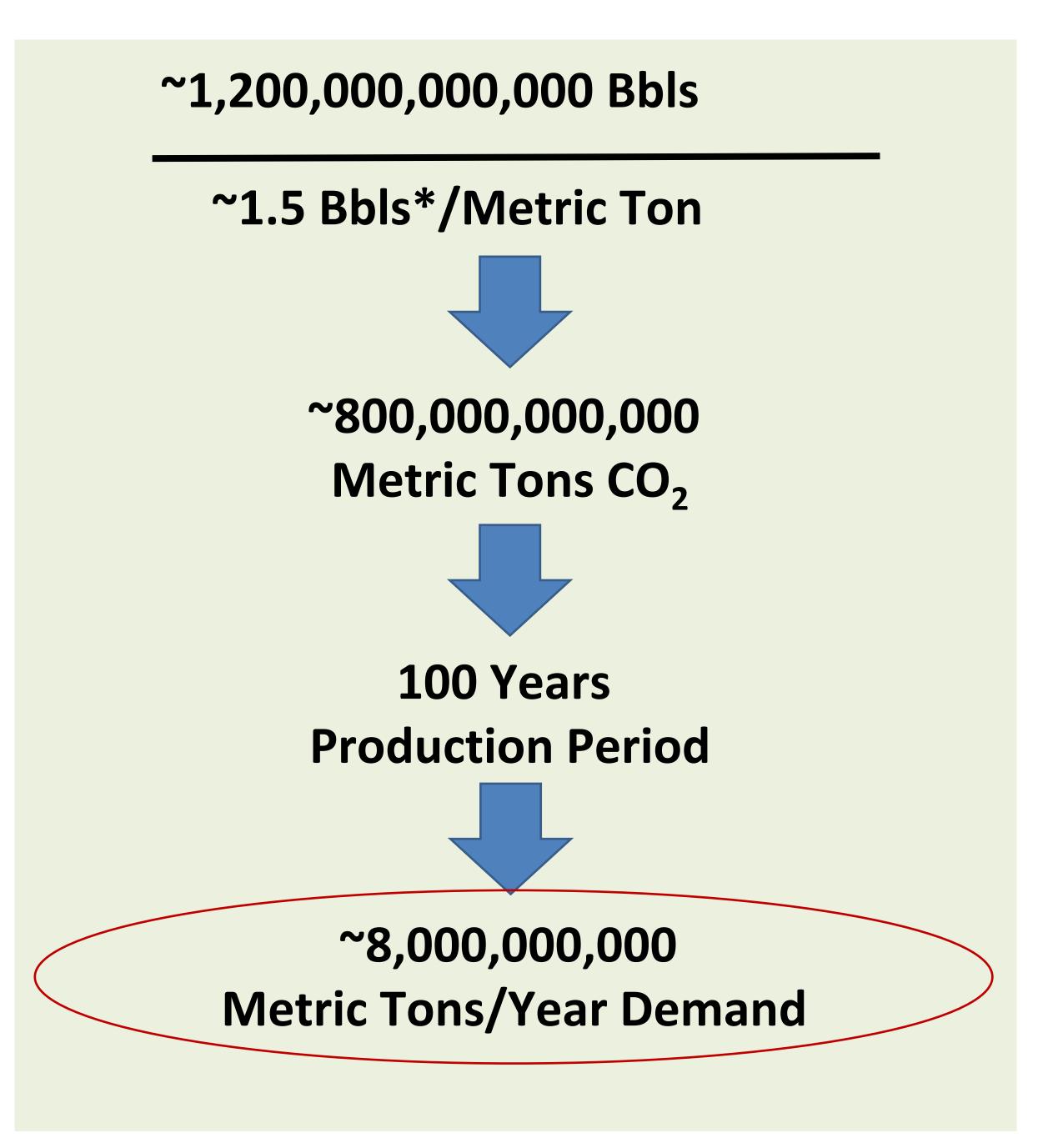
DOE near term projections of CO₂ utilization for EOR

	Daily CO ₂ Used (Metric Ton)	Daily Oil Produced (Barrels)	Barrels/Metric Ton
Permian Basin Total in 2012	88077	186000	2.1
Gulf Coast Total in 2012 - 2020	134457	110000	0.8
Rockies Total in 2012	12473	36000	2.9

1.9 Average

Data from NETL- 2014/1648

SRNS-STI-2015-00260


Anthropogenic CO, for Enhanced Oil Recovery: An Under-Utilized Resource for Greener Fuels (continued)

Savannah River National Laboratory

Gerald C. Blount and Mary K. Harris

Potential Annual CO, Demand Worldwide?

CO, Market Potential Gross Sales?

CO, delivered to reservoirs in the Permian Basin typically sells for between 2% and 3% of the value of the crude oil per 1000 ft³ of gas.

> $($80/Bbl \times 0.02) \times 19.25* = $30.80/Metric Ton$ $($80/Bbl \times 0.03) \times 19.25* = $46.20/Metric Ton$

\$246B to \$369B Gross Annual Sales Potential

* 19,250 ft³/metric ton

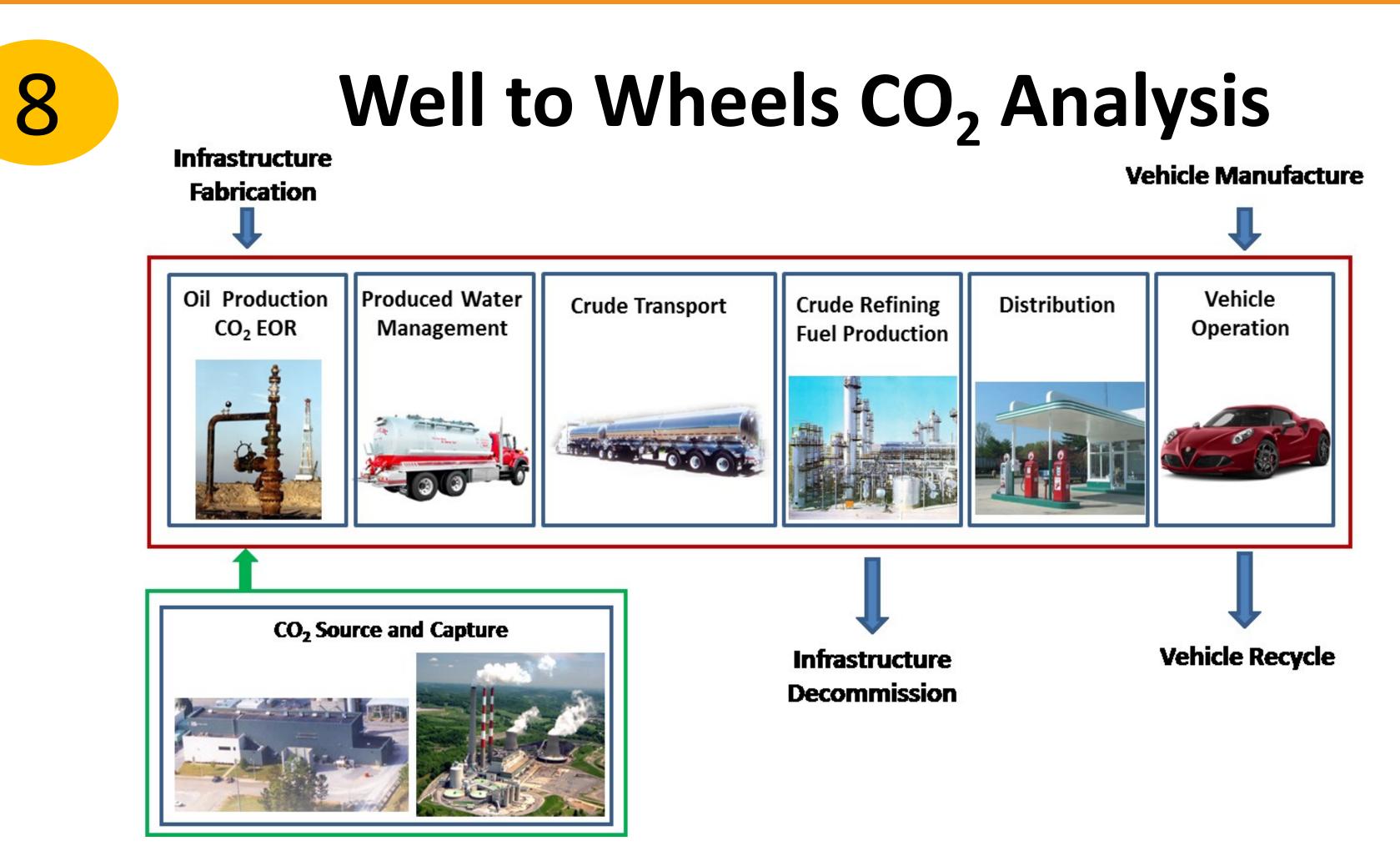
Potential Sources of CO, for EOR

Current supplies of CO₂ for EOR are mostly from geologic sources. There is a small anthropogenic fraction (gas treatment, fertilizer, refinery hydrogen, coal gasification, etc.).

- ~ 33,000,000,000 metric tons are released to the atmosphere annually from anthropogenic sources.
- ~ 10,000,000,000 metric tons are released to the atmosphere annually from large stationary sources greater than 12% CO₂ in flue gas (IEA GHG, 2002).

CO₂ Capture, Compression, and Transport Costs

Current CO₂ capture costs are greater than \$50 per metric ton. Compression and pipeline transport represents an additional ~\$15 per metric ton in cost.


Lower cost methods of CO₂ capture are needed for widespread use of CO₂ in EOR.

SRNS-STI-2015-00260

Anthropogenic CO₂ for Enhanced Oil Recovery: An Under-Utilized Resource for Greener Fuels (continued)

Gerald C. Blount and Mary K. Harris



"Well to Wheels" CO₂ Analysis Considering: crude carbon content; produced water and crude transport; refining and coke production; refined product distribution; and CO₂ from "best available" capture technology

EOR with Anthropogenic CO₂ Results in a Net Lower Carbon Transportation Fuel (More CO₂ is stored in the recovery process than is created upon combustion)

...... indicates that net CO_2 is ~ 30% less for a light oil, and ~ 23% less for a medium oil produced from EOR with CO_2 .

10 Conclusions

- There is a large potential underserved demand for CO₂ as a commodity in EOR.
- The worldwide annual market could be as large as 7 to 8 Billion metric tons.
- Only anthropogenic CO₂ sources could meet this market demand; good match with stationary sources with greater than 12% in flue gas.
- Current CO₂ capture costs are too high (greater than \$50/metric ton) to support the EOR market; less expensive methods of capture are needed.
- A simple "Well to Wheels" CO₂ analysis indicates that lower carbon transport fuels are possible when the CO₂ lost to the reservoir is considered.
 - ~30% of net CO₂ stored with light oil
 - ~23% of net CO₂ stored with a medium oil

SRNS-STI-2015-00260