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Abstract

Shallow water delta depositional systems have recently been identified as a major lithological and/or tight reservoir play. Due to its extremely
heterogeneous nature, conventional seismic data does not have the resolution to adequately characterize the thin-bedded (from cm to m scales)
reservoir sandbodies in such shallow water deltaic systems. We used the forward stratigraphic modeling program, Sedsim, to model fine-scale
sedimentary heterogeneities of modern deltas in in the Poyang Lake, southern China and a Triassic deltaic sandstone sequence in the Ordos
Basin, western China. A series of shallow-water deltas are developed in the Poyang Lake, providing an excellent modern analogue for
understanding key depositional processes that control deltaic development and evolution. We simulated the evolution of the shallow-water
deltas over the past 1200 years. The simulation indicates that the delta plain is dominated by distributary channel sandbodies of cm-dm scales
and thins towards the lake center, whereas the delta front thickens lake-center-wards, and the frequency of lake level oscillations appears to be
a significant controlling factor in determining of the deltaic architecture within the deltaic systems. The Triassic Yanchang Formation in the
Ordos Basin is the most important large-scale lithological and tight reservoir sequence in China. We simulated the Chang-6 to Chang-8
members (231.0 Ma and 217.5 Ma) over an area of 295 km x 495 km with a spatial resolution of 5 km and a temporal resolution of 50 ka and
two nest models with 1 km spatial resolution. The simulation matches the known depositional thickness and facies derived from logs and cores
and sedimentary heterogeneities down to sub-meter scale. The palaeogeography plays an important role in governing the deltaic migration,
while the high frequency lake level oscillation and sediment supply control the fine scale facies variations. The delta plain is dominated by
distributary channel sand-bodies, while the delta front is characterized by sheet-like sandstone. The sand-rich delta-plain and delta-front have
been identified as the best reservoir properties with a porosity range of 7-13% and a corresponding permeability range of 0.3 mD to 1 mD.
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Forward stratigraphic modelling

® Why do forward stratigraphic modelling?

»The quality of most tight reservoirs depends primarily on the
original environmental variations within depositional systems (Bloch

and McGowen, 1994)

e \What can the forward stratigraphic models do?

» Reconstruct the original depositional environment based on field

data

»Predict potential reservoirs away from well data and below seismic

resolution

“All models are wrong,
but some are useful”
George E.P. Box (1979)



Various forward stratigraphic models

3D Forward stratigraphic models can be
divided into several main subcategories as
follows:

»Hydraulic process-response models ( e.g.
Sedsim, Simsafadim- clastic)

»Diffusion models (e.g. Dyonisos, Dibafill)



Shallow water deltaic models

Key Issues:

® Thin sandy layers of sub-metre scale cannot be
distinguished on seismic data

®Sedimentary micro-facies cannot be effectively
recognised and interpreted due to rapid changes and
the complex distribution of sandbodies

®Direct physical correlation of effective sandbodies is
quite difficult due to scattered subsurface well data and

Isolated outcrops



Shallow water deltaic models Alms:

»Provide a reference model by simulating the development and evolution of
modern shallow-water deltas in the Poyang Lake

»Predict the effective tight reservoir plays in the Triassic Fm, Ordos Basin

— Extracted from q total of 1212

04 /’”’ core plug results from chang 86 | °% 4
EM member. For 20 wells in the =3
=) f Ordos basin B
& =

0.2 - 0.4

»The effective target reservoirs of

| | the Triassic Chang-8 and Chang-6
Permeability (mD) ' members are defined as sand bodies
with the @ of 7%-13% and K of 0.3mD
to ImD(Yao et al., 2013)




Sedsim computer program

»BYy invoking the Naviere-Stokes equations and the continuity
equation (Tetzlaff and Harbaugh, 1989) , Sedsim is capable of directly
simulating the depositional processes and their products during a
basin evolution with limited information (Griffiths et al., 2001).

a. Conceptual model

b. Input parameters

Grain size distribution Sea level variation
ofinput sediment aial

0.0004 0.007 0.15 0.3 Diameter

River sources

-total flow rate (m3.s"
- sediment concentration (kg.m?)

Subsidence, bathymetry etc...

d. Testing and calibration
of simulations

Well 1 Well 2 Well 2

Stratigraphic Forward Modelling workflow

The simulation workflow is
repeated while modifying
the conceptual model and
Input parameters until an
appropriate convergence
with available data is

achieved.



Simulating modern shallow-water deltas
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» The Poyang Lake is situated in

the northern part of the Jiangxi
Province, China, and is in a
structural depression south of
the Yangtze River

The basin has a flat
morphology with a gentle slope
(~0.1° )

The average water depth of the
lake basin is about 8.4 m (Zou
et al., 2010)

Five major rivers flowing in the
relatively flat regions
surrounding the Poyang Lake
form a series of delta systems
in the basin



Simulating modern shallow-water deltas

» No major tectonic movement over the deltaic development period in
the past 1200 years apart from a very slow subsidence

» The study area is approximately 182 km long and 164 km wide, which
Is represented by 182X 164 grids with a cell spatial resolution of 1 km

Vertical exaggeration X 100
resolution 1000 m square cells




Simulation — Input parameters

Input parameters used in the SEDSIM simulation.

Major river sources Deposition duration time (vear) Velocity (vx, v) (ms™ 1) Discharge rate (mr'/s) Con? (kg/m®) Sediment®
Compasition in% (c, m, £ vf)
Ganjiang 1200 (05, 0.05) 5140 0.21 (0, 40, 40, 20)
Xiushui 1200 (003,01) 961 0.19 (0, 40, 45, 15)
Fuhe a00 (001,014) 1047 012 (0, 40, 45, 15)
Xinjiang 200 (—02,01) 1361 0.14 (0, 40, 45, 15)
Rache a00 (—003,0) 964 0.1 (0, 40, 45, 15)

* Concentration,
b ¢: coarse, m: medium, f: fine, vf: very fine,

» The variations of sediment supply
of five rivers are a function of
lake-level fluctuations

> A lake level curve derived from Hu
(1999) and Guo et al. (2011) was
used

Lake level change (m)
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Simulation — Depositional history
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» In the proximal area
of the deltas the
zones of vertical
strata are mainly
characterized by
distributary channel
sandbodies because
the channels
bifurcate and
become shallower,

» In the distal area it is
characterised by thin
layers of fine-
grained sediments
on the extremely low
slope(~0.03° ) as the
delta migrating into
deeper water



Simulation validation — Thickness
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Simulating tight reservoirs

INn Ordos Basin
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Fig. 1. Isopach map (metres) of the LateTriassic Basin of north China (modified from Zhu & Xu, 1990).

Taken from Zou et al. (2010)

» Ordos Basin is locate

in central China, was
a large intracratonic
lacustribe basin with
an opening to the SE
during the Late
Triassic

The basin was
bounded by the Yin
mountains to the N,
the Alashan to the
NW, the Longxi Uplift
to the SW and the
Qinling mountains to
the S



Simulation- Geological setting

»During the Triassic, the interiors of the Ordos Basin continent

was not affected by the regional plate tectonics, was dominated
by deposition with slow rates of 25-35.7 m/Ma (Li et al., 2007,
Zhao et al., 2012).
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Simulation- Geological setting - seismic

»The initial basin morphological gradient is quite gentle, about
0.1° or 2 m/km during the Late Triassic (Liu et al., 2011).




Simulation parameter- lake level change
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Modified after Zou et al. (2010)

»Lake level from Zou et
al. (2010) was modulated
with high-resolution
Milankovich frequencies
and resampled at 40 ka
time step

»Simulation duration:
231 Mato 228.2 Ma (Yang
et al., 2013)



Simulation parameter - topography

The inferred palaeo-bathymetry of the Chang-9 member was used
to reconstruct a gently sloping from the north to the south, with
the depression center of the basin in the southeast
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The interpreted facies of the Chang 9 member (Yang, et al., 2013)




Simulation parameter - Subsidence

The initial subsidence rates of ca 25-35.7 m/Ma was used as the
Interiors of the continent was unaffected by the regional plate
tectonics during the Triassic (Li et al., 2007; Zhao et al., 2012).
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Simulation parameter — Sediment supply

Sediments settled in the basin were sourced from northeast,

northwest, west and southwest.
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Simulation parameter — Input parameters
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Simulation results — Depositional history
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Simulation validation — Thickness
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The thicknesses of 14 wells
obtained from Sedsim
simulation are in good
agreement with the observed
results from the wells picked,
with a 90% match achieved



Simulation validation — Well data

The pseudo-Vsh trend from the Sedsim model is quite comparable with that
of Well Mu-30 picked
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Simulation results— Heterogeneity

|
Lithology and porosity of the tight sand reservoirs are characterised

by strong heterogeneous in 3-dimentions
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Simulation results— Potential reservoirs

The 3D heterogeneity of the reservoirs indicates that Chang-8?is
coarser and more porous compared with that of Chang-82
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Simulation results— Potential reservoirs

Areas with the favourable ® for development in Chang-8 correspond
mainly to delta-front deposits & a few sand-rich areas on the delta-plain
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Simulation results— Potential reservoirs

The reservoirs of the Chang-8 member have greater potential than
that of Chang-6 in terms of total sandbody volumes and ®

distribution
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Conclusions

1. The bathymetry or morphology seems to be a key player in the
deltaic migration, while high frequency lake level oscillations and
sediment supply control the fine-scale facies variations

2. The delta plain is dominated by distributary channel sand-bodies,
while the delta front is characterized by sheet-like sandstone units

3. The sandbodies on the delta plain and delta front with a porosity
range of 7%-13% are the “sweet spot” target zones for future
exploration

4. Sedsim is a useful tool for exploration and production in the
Investigation of shallow-water delta system to predict sedimentary
geometries and distributions, test hypothesis, and better
understand the sediment processes and development
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