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Abstract 

 
Stratigraphic concepts interpret stratal architecture and sediment distribution as results of the interaction of sea level, sediment supply, and 
tectonism. Typically, these concepts emphasize changes in accommodation driven by sea level as a principal control on deposition with 
sediment supply held constant. Yet, sediment supply to a basin can vary over time due to autogenic processes, tectonism, and climate change. 
Additionally, the supply to a basin may be out of phase with sea-level changes. We use a numerical forward stratigraphic modeling program to 
generate basin-scale (shelf to abyssal plain) numerical end-member cases that examine the dynamic interaction of sediment supply cycles that 
are at a 0, 90, 180, or 270 degree phase relationship with sea-level amplitudes typical of icehouse and greenhouse conditions on the 100 kyr 
timescale (eccentricity). These numerical models quantify the impact of sea level and climate driven sediment supply on sediment distribution 
and preservation during long-term basin evolution. Our results demonstrate the utility of sediment transport modeling by testing concepts of 
basin fill typically applied to exploration areas. 
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Motivation 

 Sediment supply & distribution 
are related to the complex 
dynamics of upstream and 
downstream forcings 

– One forcing (e.g., climate) 
can be responsible for 
different responses across 
the entire sed. routing 
system 

– Lead, lags, & out of phase 
relationship with sea level 

 



© 2015 Chevron U.S.A., All Rights Reserved 

Objectives 
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 Test sediment supply phase relationships with sea-level amplitudes 
typical of greenhouse and icehouse settings 
– What are the differences in volumetric distribution and sediment delivery? 

– Does long-term shoreline or delta position really matter? 

– Is there need for different stratigraphic models for each setting? 

greenhouse icehouse 

Vs. 
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Greenhouse vs. Icehouse 

 Greenhouse 
– Warm temp. & High CO2 

– Small to no ice sheets 

– Low amplitude SL changes 

 Icehouse 
– Cool temp & Low CO2 

– Large ice sheets 

– High amplitude SL change 

 

Sømme et al. (2009): Geology 
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Motivation 

Kolla and Perlmutter (1993): AAPG Bulletin 

• Glacial meltwater pulses 

Weber et al. (1993): Geology 

• Monsoon 
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Previous Work 
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 Position of sequence stratigraphic surfaces and system tract volumes differ 
 Correlation of shelf to deepwater deposits is difficult 
 Sea level is effective at pumping sediment to deepwater 

Kim et al. (2008): SEPM Sp. 92 

Bijkerk et al. (2014): Basin Research Perlmutter et al. (1998): NPF, Spec. Pub No. 8 
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Model Setup 

 Greenhouse SL 
– 2m amp. w/ 100kyr periodicity 

 Icehouse SL  
– 50m amp. w/ 100kyr periodicity 

 Subsidence 
– 25m/Myr @ shelf slope break 

 Water and Sed. Discharge  
– Qw = 2,000 m3/sec 

– Qs = .32 m3/sec 

– 100 kyr periodicity  

– Max. 3x > Min.  

– 0º, 90º, 180º, 270º phase 

 7 Sun et al. (2014), (in prep) 
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Shelf Deposits 

Deepwater Deposits 
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Spectral Analysis of Deepwater Sediment Delivery Curves 

• One clearly defined 
frequency is identified 



Spectral Analysis of Deepwater Sediment Delivery Curves 

 Icehouse cases results in 
multiple high frequency 
sediment delivery events  
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Greenhouse – 2m amp Icehouse – 50m amp 

The residence time of deltas at the shelf edge are longer in the greenhouse cases 
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On average, icehouse volumes larger than greenhouse volumes 
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Conclusions 
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Parrish and Soreghan (2013): The Sedimentary Record 

 Greenhouse model deltas reside at the shelf margin longer than 
icehouse models 
– This does not mean that it is more effective at depositing more sediment 

in deepwater. 
– What about reservoir sands or grain size partitioning? Future work 
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Conclusions 
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Parrish and Soreghan (2013): The Sedimentary Record 

 Greenhouse model deltas reside at the shelf margin longer than 
icehouse models 
– This does not mean that it is more effective at depositing more sediment 

in deepwater. 
– What about reservoir sands or grain size partitioning? Future work 
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Conclusions 

19 

Parrish and Soreghan (2013): The Sedimentary Record 

 Icehouse setting resulted in high frequency sedimentary delivery 
signals 
–  Important implications for paleoclimate studies or inverting for the forcing 
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Conclusions 
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Parrish and Soreghan (2013): The Sedimentary Record 

 Icehouse and greenhouse basin margin development may necessitate 
different stratigraphic concepts. 
– The geologic record is dominated by greenhouse settings 
– Understanding catchment dynamics related to tectonism and climate may 

be more important than sea level in greenhouse setting compared to 
icehouse settings. 
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