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Abstract 

 

The Woodford Shale provides an opportunity to test recent advances in handheld XRF (HHXRF) technology to develop and refine sequence 

stratigraphic frameworks by comparing chemostratigraphic profiles directly to gamma ray logs obtained from the same locations. Three cores 

from Lincoln, Pottawatomie, and Pontotoc Counties in Oklahoma and two outcrops at the Hunton Anticline Quarry (HAQ) in Murray County, 

OK represent both proximal and distal environments of the Woodford Shale. Clean surfaces at each area are scanned at no greater than one foot 

intervals using HHXRF to determine the elemental profiles. At the same resolution, a gamma ray profile is scanned using a GR scintillator or 

core spectral gamma ray. The lithologic description, gamma ray profile, and elemental profiles are then used to develop the sequence 

stratigraphic interpretation. 

 

Stratigraphic successions that are correlatively ambiguous based on GR profiles alone are able to be properly correlated by utilizing surfaces 

that are recognized within chemostratigraphic profiles. Certain elements act as proxies for local depositional and environmental conditions 

during sedimentation. The principal elements used in this study are titanium (Ti), zirconium (Zr), silicon (Si), calcium (Ca), strontium (Sr), 

phosphorous (P), aluminum (Al), potassium (K), molybdenum (Mo), and vanadium (V). 

 

Ti and Zr are associated with continentally derived sediment. Ca and Sr are associated with carbonate accumulation. Al and K are associated 

with feldspars and clays. Mo and V can be used as an indication of redox conditions. Si is found in biogenic quartz, detrital quartz, feldspars, 

and clays. As such, it is useful to evaluate Si as a ratio between Si/Al. When evaluated in conjunction with the Ti and Zr concentrations, the 

Si/Al ratio provides a rough approximation for the amount of biogenic quartz present within a horizon. At several horizons in the Woodford the 

Si/Al value spikes, these spikes are interpreted as algal blooms at these locations. Immediately above these blooms, there is typically a sudden 

peak in carbonate proxies, interpreted as incipient hard-ground formation. When found together, these horizons are interpreted as surfaces of 

non-deposition that can be used for building a correlative stratigraphic framework. These chemostratigraphic successions are capable of 

resolving high frequency cyclicity that can refine a sequence stratigraphic framework. 
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Purpose

• To utilize a series of elemental proxies to develop a sequence 
stratigraphic framework that can be used to correlate fine-
grain lithologies.

– Lateral facies shifts within mudrocks are subtle, but can be significant 
and pervasive. 

– Highlight these shifts with greater precision than is possible in 
coarser lithologies.



Methods

Regional Framework

• Four sites selected spanning 70 miles
– Two outcrops within a quarter mile

• To confirm the signal is locally reproducible

– Three additional subsurface cores

• Samples scanned using HHXRF

• Outcrops sampled every stratigraphic foot

• Core sample spacing varied
– 6” to 2” depending on time with the core

• Gamma ray data used when present (core 
gamma, down-hole gamma, outcrop 
gamma)

• Local, cumulative shoreline trajectories used to 
build the regional chemosequence
stratigraphic framework based on individual 
chemostratigraphic profiles



Homogenous Black Shale?
Si/Al Zr Al Mo



Elemental Proxies
• Certain elements have been found to be commonly found in 

association with different types of sediment:

• These elements are generally considered “immobile”, but it is best 
to utilize multiple proxies to make interpretations.

Element(s): Indicates: Source(s):

Ti and Zr Continental Sediment (c.f. Sageman and Lyons, 2004; 
Tribovillard et al., 2006)

Ca and Sr Typically carbonate material, but can be associated 
with clay minerals, feldspars, phosphates, or sulfates

(c.f. Banner, 1995)

K and Al In mudrocks, usually clay minerals, but can also be 
found in feldspars

(c.f. Sageman and Lyons, 2004; 
Tribovillard et al., 2006)

Mo and V The degree of anoxia present within a basin (c.f. Tribovillard et al., 2006; Algeo and 
Rowe, 2012)

Si/Al or Si/Ti How much quartz is present within the sediment (c.f. Pearce and Jarvis, 1992; Pearce et 
al., 1999; Tribovillard et al., 2006)



Chemosequence Stratigraphic Predictions

• LST: A general increasing trend in detrital signals (Ti, Al, Zr, K)
– Al and K are more likely to be associated with feldspars 
– Isolated mini-basins may show high degrees of restriction (high Mo and V)

• TST: A general decreasing trend in continental proxies (Ti and Zr)
– Al and K become more associated with the clay fraction, and may remain 

high with respect to Ti and Zr
– General decline in levels of restriction within the basins

• HST: A general increasing trend in detrital signals 
– Capped by a surface of erosion (non-waltherian facies shift)
– Bottom waters should be well circulated (low Mo and V)
– In a carbonate system, HST will be dominated by increases in Ca and Sr.



Wyche Farm Quarry – Type Well

Modified from Turner et al., 2015



Chemofacies vs. Lithofacies

Modified from Turner et al., 2015



The Individual Shoreline components



Chemosequence Stratigraphic Framework
(Regional Scale)
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Modified from Turner et al., 2014



Local Sea Level vs Global Sea Level 
• The trends in local sea level for the Arkoma Basin are in good 

agreement with previous work interpreting the global sea level 
trends at this time.
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Conclusions

• With the recent advances in HHXRF, it is becoming increasingly 
cost-effective to collect data for high resolution 
chemostratigraphic data sets.

• The fine-grained nature of mudrocks, which contributes to the 
development of subtle stratigraphic surfaces, are ideal for 
analysis with HHXRF.

• Chemostratigraphic proxies can be used to develop sequence 
stratigraphic frameworks.
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