Paragenesis of Mineralized Fractures in Organic Rich Shales*

Richard D. Elmore¹, Shannon A. Dulin², Earl B. Manning³, Alex K. Steullet⁴, Alex Benton⁵, Devin Dennie⁵, Jennifer Roberts², Gerhard Heij⁶, and John Deng⁶

Search and Discovery Article #51178 (2015)**
Posted October 13, 2015

*Adapted from oral presentation given at AAPG Annual Convention & Exhibition, Denver, Colorado, May 31-June 3, 2015
**Datapages © 2015 Serial rights given by author. For all other rights contact author directly.

¹ConocoPhillips School of Geology and Geophysics, University of Oklahoma, Norman, Oklahoma, United States (delmore@ou.edu)
²ConocoPhillips School of Geology and Geophysics, University of Oklahoma, Norman, Oklahoma, United States
³Shell Oil Company, Houston, Texas, United States
⁴Noble Energy, Houston, Texas, United States
⁵Devon Energy, Oklahoma City, Oklahoma, United States
⁶Marathon Oil Corp, Houston, TX, United States

Abstract

Mineralized fractures are common in organic-rich shales and are of interest because the mineralogy can influence shale brittleness and porosity/permeability. We have noted similarities in the paragenesis of mineralized fractures from several shale units of different ages and from different basins (Devonian Marcellus Shale [PA], Mississippian Barnett Shale [TX], Devonian/Mississippian Woodford Shale [OK], and Late Jurassic Haynesville Shale [TX]). The shales contain localized vertical/subvertical and some horizontal mineralized fractures that vary in width from thin (~0.04 mm), usually filled with calcite, to thick (>0.2 mm), which have a complex mineralogy. Some fractures or veins are precompactional although most are interpreted to form late in the diagenetic sequence. The Barnett, Haynesville, and Marcellus contain complex fractures with calcite, dolomite, baroque dolomite, quartz, chalcedony, barite, celestine, pyrite, sphalerite, anhydrite, and albite. New work on the Woodford in southern Oklahoma indicates a similar mineralogy. Dissolution events also occur in the paragenetic sequences and some fractures are associated with brecciation. Fluid inclusion studies suggest interaction with multiple fluids, including hydrocarbons and hydrothermal fluids. Variation in cathodoluminescence and compositional variations within individual minerals indicate precipitation from evolving fluids. In some cases the minerals in the fracture extend into the surrounding shale, which could influence brittleness and the likelihood of reactivation. It is also clear that the nature of the fracture can be influenced by the composition of the host shale. The similar and anomalous mineral assemblages in the fractures from the different shales indicate alteration by similar fluids, internal and/or external, and suggest similar sources for the minerals. The results from different shales in different tectonic settings raise fundamental questions about whether the shales are open or closed systems.
References Cited

Paragenesis of mineralized fractures in organic rich shales

R. Douglas Elmore¹, Shannon Dulin¹, Earl Manning², Alex Steullet³, Alex Benton⁴, Devin Dennie⁴, Jennifer Roberts¹, Gerhard Heij¹, and John Deng⁵

(¹) School of Geology and Geophysics, The University of Oklahoma, Norman, OK (²) Shell Oil Company, Houston, TX, (³) Noble Energy, Houston, TX, (⁴) Devon Energy, Oklahoma City, OK, (⁵) Marathon Oil Corp., Houston, TX
Mineralized fractures are common in shales

Fundamental questions:

- What does the fracture mineralogy tell us about diagenesis and fluid flow?
- Are shales open or closed systems?
- How do mineralized fractures influence brittleness?
- Are healed fractures barriers to flow? Could they be conduits for flow? Do they affect production?
- Scale issues?

Presenter’s notes: Shales can be significantly altered during diagenesis. Diagenetic studies on shale gas plays like the Marcellus are very important currently and in the future. A better understanding of the paragenetic sequence of diagenetic events help predict both hydrocarbon prone and uneconomic regions, as diagenesis can have both positive and negative effects on reservoir quality.

Sphalerite found in vein from the Evanick #1 Cherry valley Limestone.
Objectives

Test for similarities and differences between mineral paragenesis of fractures from shale units of different ages and from different basins

Test if shales open or closed systems

- Devonian Marcellus Shale [PA] – core and outcrop
- Devonian/Mississippian Woodford Shale [OK] – core and outcrop
- Mississippian Barnett Shale [TX] - core
- Late Jurassic Haynesville Shale [TX] - core
Mineralized Fracture Types

All shales contain localized vertical/subvertical and horizontal mineralized fractures

- Vary in width from thin (< 0.02 mm) to thick (> 0.2 mm)
- Commonly contain calcite and other minerals
- Faults zones and breccias have a complex mineralogy
- Natural hydraulic fractures
Precompactional fractures

Woodford
Presenter’s notes: SEM picture of a barite, celestine, anhydrite filled vein. Barite and celestine have been found in numerous veins throughout the Barnett and may add complexities during fracturing. Also note the complex mineralization history of this vein. The calcite has mineralized along fractures within the Barite.

- Anhydrite, Celestine, barite, calcite, pyrite
- Refracturing and replacement, fluids migrated into mineralized fractures
Presenter’s notes: This is an SEM photo of one of our sulfate filled veins. Barite is a Barium rich sulfate. Celestine is a Strontium rich sulfate. Anhydrite is a Calcium rich sulfate. The white is Barite and the grey is Celestine.

Using the microprobe, we performed a transect across the vein to determine the Barium and Strontium geochemistry.

The graph on the right shows the relative amounts of Barium and Strontium from various points analyzed with Barium in Blue and Strontium in red.

There is a decrease in Barium with an increase in Strontium as we move across the vein.

This solid solution of Barite/ Celestine we view as evidence that these sulfates were from evolving fluids that had remobilized Barium and Strontium.
This is an SEM photo of one of our sulfate filled veins. Barite is a Barium rich sulfate. Celestine is a Strontium rich sulfate. Anhydrite is a Calcium rich sulfate.

The white is Barite and the grey is Celestine.

Using the microprobe, we performed a transect across the vein to determine the Barium and Strontium geochemistry. The graph on the right shows the relative amounts of Barium and Strontium from various points analyzed with Barium in Blue and Strontium in red.

There is a decrease in Barium with an increase in Strontium as we move across the vein. This solid solution of Barite/ Celestine we view as evidence that these sulfates were from evolving fluids that had remobilized Barium and Strontium.
Presenter’s notes: This is an SEM photo of one of our sulfate filled veins. Barite is a Barium rich sulfate. Celestine is a Strontium rich sulfate. Anhydrite is a Calcium rich sulfate.
The white is Barite and the grey is Celestine.
Using the microprobe, we performed a transect across the vein to determine the Barium and Strontium geochemistry.
The graph on the right shows the relative amounts of Barium and Strontium from various points analyzed with Barium in Blue and Strontium in red.
There is a decrease in Barium with an increase in Strontium as we move across the vein.
This solid solution of Barite/ Celestine we view as evidence that these sulfates were from evolving fluids that had remobilized Barium and Strontium.
- Near vertical fibrous calcite filled fracture partially replaced by barite
- Replacement of earlier formed minerals common
Presenter’s notes: At the base of the Forestburg, there is a shelly hash which lies unconformably on top of the Lower Barnett. Through SEM analysis, anhydrite was found adjacent to celestine, outside of a vein. Switching to cross polars, the blue and blue/purple mix make up the anhydrite while the cool grey blue is the celestine. While I am unsure of which mineral precipitated after which, I believe that the anhydrite may have precipitated after the celestine or at earliest co-precipitated.

Thin section of the interface between the Forestburg and Lower Barnett. Thick shell hash is seen in the Forestburg before an abrupt lithology change into what is traditionally known as the Lower Barnett Shale. Within the slide, there is a myriad of minerals, but specifically we see Anhydrite growing adjacent to Celestine.
Dolomite, Calcite & Silica in Fractures - Barnett

- Dolomite
- Calcite
- Dissolution of dolomite/calcite
- Quartz
- Fluids are migrating into mineralized fractures
Dolomite, Calcite & Silica in Fractures - Barnett

- Dolomite
- Calcite
- Dissolution of dolomite/calcite
- Quartz
- Fluids are migrating into mineralized fractures
Haynesville

- Blocky calcite and dolomite
Haynesville - Complex Diagenesis – Breccias

Barite
Anhydrite
Celestine
Calcite
Haynesville - Complex Diagenesis – Breccias

Barite
Anhydrite
Celestine
Calcite
Haynesville - Complex Diagenesis – Breccias

- Anhy
- Ca
- Ce

Barite
Anhydrite
Celestine
Calcite

200nm
Mineralized fracture - Haynesville

- Sphalerite
- Pyrite
- Albite
Marcellus

Barite

Albite

Sphalerite

pyrite

carbonate

talc

barite

carbonate

Barite

50 µm

100 µm

200 µm
• Bitumen and hydrocarbon inclusion rich calcite is enriched in iron compared to the luminescent calcite

• Varying luminescence indicates evolving fluids
• Bitumen and hydrocarbon inclusion rich calcite is enriched in iron compared to the luminescent calcite

• Varying luminescence indicates evolving fluids
Marcellus mineralized fractures – Fluid inclusions

- At least two types of inclusions in calcite
 - CH₄ + CO₂
 - Single phase CH₄

- CH₄ + CO₂
 - T_{HH} between -88.3 to -98.6°C
 - T_{mCO₂} between -109.7 and -112.6°C

- Relate to burial history
 - Moderate burial depths (~3.5 km)
Here are two SEM pictures, the one on the left showing barite, and the one on the right showing an authigenic plagioclase lath.

From all of this it can be seen that this shale has been extensively altered, but the question remains as to when and how these diagenetic events occurred, which is where paleomagnetic techniques come into play.
Presenter’s notes:
• W2
• Vertical fracture
• Authigenic albite vein being replaced by dolomite
• Hydrocarbon in the middle in between
Mineralized fracture extends into matrix

- Mg, Si, O peaks on EDAX
- Talc?

Woodford W2
Summary of paragenesis in mineralized fractures
Mostly mid to late diagenesis

- Calcite, dolomite, pyrite, albite, barite, anhydrite, and sphalerite are found in fractures in all four units
- Celestine – Haynesville and Barnett
- Woodford also contains witherite, albite in vein, talc?, and apatite
- Replacement of previously formed minerals in fractures is common – permeability pathways

Paragenetic Sequence for the Dulcey Bra SH and Evanschick #1

<table>
<thead>
<tr>
<th>Diagnostic Event</th>
<th>Early</th>
<th>Middle</th>
<th>Late</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micritization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concretion formation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cubic pyrite (concretions)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyrite lamination</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prehnite/porphyroclastic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anhydrite/Barite</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pore space dissolution/Oxidation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcite precipitation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biogenic calcite & dissolution</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barite replacement & precipitation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizontal veinage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertical veinage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sphalerite</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcite</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anhydrite</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barite</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyrite</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dolomite</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breciation (diagenetic zones)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dolomite</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sphalerite</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sylvite</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cubic pyrite (allochroic)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Shading – degree of certainty

Marcellus

Origin of natural fractures – overpressuring?
Scale Issues

Nano pores in organic matter (Mark Curtis, OU MPG&E)

- Pores in clays
- Sedimentary structures
- Pores in pyrite
- Mineralized fractures
- Large scale fractures and faults (can be missed if looking at cores)
X-ray computed tomography (XRCT) scans were performed on representative 1-inch plugs from both shales. XRCT provides detailed 3-D imagery of the interior of rocks through a global X-ray scan that produces multiple grayscale images (e.g., Ketcham, 2005). These images are stacked to render a 3-D image of a specimen.
Discussion

Similar minerals in fractures from shales of different ages and from different basins

Most minerals in fractures in the Marcellus, Barnett, and Haynesville can be explained by an internal source of fluids (Seawater, fluids released from smectite)

- **Barite** – Early, biologic?
 - Anaerobic oxidation of methane (e.g., Lash, 2015)
 - Redistributed early barite and celestine – barite is unstable in strongly reducing environments (Hanor, 2000); migrates into fractures

- **Albite** (authigenic) – models (Kastner, 1971)
 - Isochemical – components from the rock
 - Na from seawater or clay transformations
 - Si and Al from smectite
 - Migrating saline fluids – hydrothermal

Presenter’s notes: Fluids can have multiple origins: tectonics (e.g. basinal saline brines), overpressuring caused by water expelled from compaction of sediments, and generation of hydrocarbons.
Discussion Cont.

- **Sphalerite** – Internal or external source of fluids
 - Reports of early diagenetic sphalerite (Selleck, 2014)

Woodford – Exception based on preliminary data

- **Witherite, Talc, and Apatite in fractures**
 - Suggest an external source, probably hydrothermal
 - Orogenic fluids related to Ouachita Orogeny
 - Complex open system
Conclusions

• Mineralized fractures are common - they can have a complex mineralogy

• Barnett, Marcellus, and Haynesville - largely closed system

• Woodford – Complex open system?

• Fluids are migrating into mineralized fractures and replacing previously formed minerals – permeability pathways

• Mineralized fractures can affect reservoir quality (e.g., brittleness)

• How connect different scales?