Petrology of Volcanic Rocks from Bequia and St. Vincent*
Michal Camejo1, Richard Robertson1, Elena Melekhova2, Anna Hicks3, and Thomas Christopher1,4

Search and Discovery Article #51171 (2015)**
Posted October 13, 2015

*Adapted from oral presentation given at AAPG Latin America and Caribbean Region, 20th Caribbean Geological Conference 2015, Port-of-Spain, Trinidad & Tobago, West Indies, May 17-22, 2015
**Datapages © 2015 Serial rights given by author. For all other rights contact author directly.

1Seismic Research Centre, University of the West Indies, Trinidad, W.I. (michal.camejo@gmail.com)
2School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, UK
3School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
4Montserrat Volcano Observatory, Salem, Montserrat, W.I.

Abstract

Volcanism in the Lesser Antilles is a manifestation of the westward subduction of the North American plate beneath the Caribbean plate. The compositions of the igneous rocks produced vary along the arc. The calc-alkaline rock suite, usually typified in its occurrence in subduction zones settings, is not ubiquitous in the Lesser Antilles volcanic arc. There is a chemical variation along the arc axis that can only be explained by the presence of more than one magma series: alkaline in the south, calc-alkaline in the central islands and tholeiitic to the north. The occurrence of different magma series within a close spatial and temporal setting provides an opportunity to assess the factors controlling erupted lava compositions in a modern intra-oceanic volcanic arc. Within this context, the geochemical affinities of neighbouring volcanic islands Bequia and St. Vincent have been found to be transitional between alkalic and calc-alkaline characteristics, reflecting their positions along the arc. Recent research has highlighted a petrological and geochemical boundary between Grenada and St. Vincent, but its position in the Grenadines has not yet been determined. This study uses petrological and geochemical data from lavas of Bequia and La Soufriere, St. Vincent to compare the evolution of the magmatic systems from both localities to help constrain the geochemical transition in the southern segment of the arc.

Phenocryst compositions from Bequia and Soufriere lavas were determined using electron probe microanalysis. These analyses and petrographical observations were used to explore the roles of differentiation processes involved in each system’s magma
evolution. The lavas studied consisted of basalts and andesites (Bequia) and basaltic andesites (La Soufriere), the most mafic of which (pyroxene mg-number 82) came from Bequia. These phenocryst rich lava suites contained mineral assemblages dominated by mafic phases including clinopyroxene, Ti-magnetite, plagioclase and orthopyroxene for Soufriere, with the addition and exclusion of olivine and spinel respectively for Bequia. Both systems exhibited similar disequilibrium textures with phenocrysts showing evidence of compositional zoning, overgrowths, resorption and exsolution. Bequia olivines provided evidence for post magmatic alteration showing partial to complete replacement to iddingsite. While similar disequilibrium textures and mineral assemblages suggested similar evolutionary histories for both suites, this did not necessarily translate to their mineral chemistries being the same.

A comprehensive comparison of these lavas is not complete without the inclusion of geochemical analyses. Pending the inclusion of whole rock geochemical data, this preliminary study is based on phenocryst chemistry and petrography of the samples analysed, along with data from previous research in these areas.

References Cited

Petrology of Volcanic Rocks from Bequia and St. Vincent

Michal Camejo¹ (Ph.D. Candidate)

Contributors:
Richard Robertson¹, Elena Melekhova², Anna Hicks³, Thomas Christopher¹,⁴

¹Seismic Research Centre, The University of the West Indies, Trinidad, W.I.
²School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, UK
³School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
⁴Montserrat Volcano Observatory, Salem, Montserrat, W.I.
Presentation Outline

• Lesser Antilles island arc volcanism
• Bequia and St. Vincent: eruptive history, analyses
• The way forward
Lesser Antilles Volcanism

1812 eruption Soufrière, St. Vincent
Painting by Joseph Turner

After Brown et al., 1977
Magma Generation at Subduction Zones

- Magmatic Differentiation
- Fractional Crystallization
- Assimilation
- Magma Mixing

St. Vincent Volcanism
La Soufrière

Historical activity

• highly explosive eruptions, preceded by frequent, strong earthquakes
• quietly effusive extrusions of viscous lava domes unaccompanied by earthquakes

Pre-historic activity

• Volcano flanks: basaltic lavas (Pre-Somma) overlain by Yellow Tephra Formation
• 4 formations identified in the crater: Debris Flow, Brown Tuff, Crater Lava and Pyroclastic Formations

La Soufrière crater (Sigurdsson 1981)
Bequia Volcanism

Isotopically Homogenous Suite

Isotopically Diverse Suite

Smith et al. 1996

Source: Smith et al. 1996

BEQUIA

- Northern Peninsular Volcanics
- Mount Pleasant Volcanics
- Southern Peninsular Volcanics

4.5-3.5 Ma

5.0 Ma

4.5 Ma
Basis for Bequia-St. Vincent Comparison

- Bequia and St. Vincent are geographical neighbours

- Petrological and geochemical boundary between Grenada and St. Vincent
Methods

Lava samples collected from Bequia and Soufrière, St. Vincent

Lava Analyses

Mineral Textures via Petrographic Microscope

Phenocryst Compositions via Electron Probe Micro-Analysis
Phenocryst Mineral Modes

- Bequia basalt (L1)
- Bequia basalt (BL7)
- Bequia andesite (BL2)
- Bequia basalt (AL1)
- Soufriere basaltic andesite (87)
- Soufriere basaltic andesite (85)
- Soufriere basaltic andesite (84)
- Soufriere basaltic andesite (83)

Mineral mode:

- Olivine
- Clinopyroxene
- Spinel
- Plagioclase
- Orthopyroxene
- Groundmass
Photomicrographs (plane polarised light) of textural features in lavas

Bequia basalt (L1)

Bequia andesite (BL2)

Soufrière basaltic andesite (85)

Bequia glomerocryst cluster (AL1)

Soufrière glomerocryst cluster (83)

Minerals: ol, olivine; pl, plagioclase; cpx, clinopyroxene; spl, spinel

Alteration: p.i., partial iddingsitization
Olivine phenocryst compositions

Cores
n = 8

Rims
n = 8

Unzoned
n = 34
Pyroxene phenocryst compositions

- Bequia basalts
- Bequia andesite
- Soufriere basaltic andesites

Text:

Pyroxene phenocryst compositions

Image:

- Pyroxene phenocrysts in a magma chamber, showing different compositions.

Legend:

- Cpx: Pyroxene

Diagram:

- Triangular plot showing compositions of pyroxenes with different mineral phases.

Details:

-Wo, En, Fs axes with various mineral compositions marked:
 - Diopside
 - Hedenberghite
 - Augite
 - Clinopyroxene
 - Enstatite
 - Ferrosilite

- Scale: 1000 µm
Plagioclase phenocryst compositions

- Plagioclase phenocryst compositions
 - Distance from rim (µm)
 - An (%) vs. Distance from rim (µm)
Plagioclase phenocryst compositions

Bequia
Cores
n = 14
Rims
n = 14
Unzoned
n = 52

Soufrière
Cores
n = 9
Rims
n = 11
Unzoned
n = 43
Preliminary Comparison

• Similar disequilibrium textures in both localities

• Need to include geochemical data to elucidate any differences in compositions
Field boundary from Irvine & Baragar (1971)

Calc-alkaline

Tholeiitic

X = FeO*/MgO
Y = SiO₂

Whole Rock Data:
Smith et al. 1996
Robertson 2003
Heath et al. 1998
Further Work

• Conduct whole rock geochemical analyses (XRF)

• Collect and analyse more rock samples from Bequia and Soufrière

• Analyse rock samples from Kick ‘em Jenny and incorporate into study
Ultimate objectives of research

- Investigate processes and materials influencing magmatic evolution on both islands
- Determine what drives eruptions at La Soufrière
- Constrain petrological transition between Grenada and St. Vincent
Thanks for your attention