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Abstract

The Lower Triassic Montney Formation of the Western Canadian Sedimentary Basin is a world-class unconventional resource of gas, gas
condensate and oil. Although commonly described as a shale, it is a siltstone over most of its subcrop, which presents complications for
understanding and predicting petrophysical properties and hydrocarbon distribution. Petrophysical properties are functions of rock fabric,
mineralogy and diagenetic processes, which in turn depend on sediment provenance, depositional environment, the pressure and temperature
history, and fluid flow. In this study we are building a basin-wide petrophysical assessment of the Montney Formation, related to mineralogy
and diagenesis and correlated with a sequence stratigraphic model. Datasets include mineralogical analyses from QEMSCAN and XRD, whole
rock geochemical analyses by ICP-MS/ ICP-EAS, petrographic analysis from thin-section investigation with optical and cathodoluminescence
microscope, and SEM imaging and pore system characterization. The Montney paragenetic sequence includes both pore-occluding and
porosity-enhancing events. Pore-occluding events include precipitation of cements (quartz, feldspar, calcite and several generations of
dolomite), mineral replacement (dolomite replacing silicate grains and gypsum replacing carbonates), and precipitation of authigenic phases in
open pore space (pyrite and different types of clay). Pore-enhancing events include dissolution of different phases (feldspar, quartz and
carbonate bioclaststic grains). Mapping mineralogy and diagenesis throughout the basin and incorporating this information, together with well
logs, into GAMLS software (Geologic Analysis via Maximum Likelihood System) enabled us to generate a lithological model of the Montney
that was fine-tuned against core logs. From the calibrated model, we calculated porosity and water-saturation profiles for selected wells and
compared these results with porosity data obtained in the lab. This study is the first attempt at understanding pore systems of the Montney
Formation on a regional scale and within the sequence stratigraphic boundaries. Our results provide a platform for modeling basin-scale fluid
flow and predicting hydrocarbon distribution in the Montney.
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The Montney Formation

12-36-083-25W6
16-17-083-25W6
#14-14-076-12W6

«06-33-072-25W5

Blakey 2011; http://www2.nau.edu/rcb7/namTr245.jpg

Presenter’s notes: The Montney is a Lower Triassic siltstone formation that was deposited on the western margins of Pangea in shallow marine settings. On the Isopach map on the right the Montney is thickening
westward and eroded to a zero edge on the eastern side by a major unconformity. All data presented will follow the cross section of those 4 wells. Samples are either from core chips (16-17 well) or cutting
samples— all other wells.



The Montney Formation
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Presenter’s notes: The Montney, though considered a shale play, is actually siltstone reservoir. We know a lot about how a sandstone reservoir behaves, and in the past years we developed a good understanding
of shale-reservoir processes. Howeve, we do not know much about siltstone reservoirs. How would a siltstone reservoir differ from a shale or a sandstone?



Rock Composition - QEMSCAN

Backscattered Electron Microscope

Energy Dispersive X-Ray Spectroscopy

Presenter’s notes: This is where technology is important; we use QEMSCAN to get precise mineralogy of core and cutting samples. Major advantage is the ability to distinguish micas from clays which can not be
done by XRD.



VR0, 1,53 Rock Composition
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Presenter’s notes: The bulk mineralogy plots for the 4 wells show a decrease in the total carbonate content towards the shallow part of the basin.



Diagenetic Trends - Carbonates
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Calcite

Almost no detrital calcite was found. When present almost always found as nucleus
for later dolomite growth

Poikilotopic cement and overgrowth around dolomitic grain cores

Possibly late diagenetic phase




Dolomite

Dolomite is present as detrital grains, authigenic crystals and overgrowth rims
At least 2 generations of dolomite exist - possibly more.

Dolomite dissolution is common

Fe-Dolomite is visible in SEM by lighter colour




16-17-083-25W6 .
Core chips samples Iron-Bearing Phases
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Presenter’s notes: Deep wells (only one is presented; the others look very similar but the relations between minerals are more blurred (to be explained subsequently). Negative correlation between Fe dolomite and
pyrite. This means that as long as there is sulfide- pyrite being precipitated, and when sulfide is no longer present, iron is incorporated into the carbonate. Very low oxide content. A small increase at the bottom of
the section with low pyrite and high Fe-dolomite (high Fe in the water, low S [Fe is not the limiting factor?]). Chlorite content increases towards the bottom of the well. Chlorite requires volcanic origin--
sediment source dependent-- less dependent on the amount of Fe in the system and the oxygen fugasity.

Middle and shallow wells- the pyrite to Fe-dolomite negative correlation is not everywhere kept, probably because there is some mixing in the samples (both are cutting samples). Lower concentrations of Fe-
dolomite. Will be harder to conclude about minerals precipitation processes and water or sediment conditions from these samples as the relations between the phases are not straightforward because of the mixing.
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Core chips samples Iron-Bearing Phases
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Presenter’s notes: Deep wells (only one is presented; the others look very similar but the relations between minerals are more blurred (to be explained subsequently). Negative correlation between Fe dolomite and
pyrite. This means that as long as there is sulfide- pyrite being precipitated, and when sulfide is no longer present, iron is incorporated into the carbonate. Very low oxide content. A small increase at the bottom of
the section with low pyrite and high Fe-dolomite (high Fe in the water, low S [Fe is not the limiting factor?]). Chlorite content increases towards the bottom of the well. Chlorite requires volcanic origin--
sediment source dependent-- less dependent on the amount of Fe in the system and the oxygen fugasity.

Middle and shallow wells- the pyrite to Fe-dolomite negative correlation is not everywhere kept, probably because there is some mixing in the samples (both are cutting samples). Lower concentrations of Fe-
dolomite. Will be harder to conclude about minerals precipitation processes and water or sediment conditions from these samples as the relations between the phases are not straightforward because of the mixing.
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Cuttings samples
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12-36-083-25W6
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Cuttings samples -
Iron-Bearing Phases
14-14-076-12W6 06-33-072-25W5
BB w (%) Wt (%) W (%)
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Presenter’s notes: Deep wells (only one is presented; the others look very similar but the relations between minerals are more blurred (to be explained subsequently). Negative correlation between Fe dolomite and
pyrite. This means that as long as there is sulfide- pyrite being precipitated, and when sulfide is no longer present, iron is incorporated into the carbonate. Very low oxide content. A small increase at the bottom of
the section with low pyrite and high Fe-dolomite (high Fe in the water, low S [Fe is not the limiting factor?]). Chlorite content increases towards the bottom of the well. Chlorite requires volcanic origin--
sediment source dependent-- less dependent on the amount of Fe in the system and the oxygen fugasity.

Middle and shallow wells- the pyrite to Fe-dolomite negative correlation is not everywhere kept, probably because there is some mixing in the samples (both are cutting samples). Lower concentrations of Fe-
dolomite. Will be harder to conclude about minerals precipitation processes and water or sediment conditions from these samples as the relations between the phases are not straightforward because of the mixing.



Cuttings samples

Iron-Bearing Phases
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Presenter’s notes: Deep wells (only one is presented; the others look very similar but the relations between minerals are more blurred (to be explained subsequently). Negative correlation between Fe dolomite and
pyrite. This means that as long as there is sulfide- pyrite being precipitated, and when sulfide is no longer present, iron is incorporated into the carbonate. Very low oxide content. A small increase at the bottom of
the section with low pyrite and high Fe-dolomite (high Fe in the water, low S [Fe is not the limiting factor?]). Chlorite content increases towards the bottom of the well. Chlorite requires volcanic origin--
sediment source dependent-- less dependent on the amount of Fe in the system and the oxygen fugasity.

Middle and shallow wells- the pyrite to Fe-dolomite negative correlation is not everywhere kept, probably because there is some mixing in the samples (both are cutting samples). Lower concentrations of Fe-
dolomite. Will be harder to conclude about minerals precipitation processes and water or sediment conditions from these samples as the relations between the phases are not straightforward because of the mixing.



Clays

The Montney is considered to have very low clay content

Our results show:

* wide range of 1.6 - 32% clay content (average of 14%)
* lllite and MLIS are most abundant (up to 100%)

* 5% Expendable MLIS in the deep part of the basin

¢ Lesser amounts of chlorite, kaolinite
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Detrital & Diagenetic Clay




16-17-083-25W6

Diagenetic Trends - Clay
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* Constant Al content (Al does not leave the system)
* Partitioning of Al between clays and feldspars varies (diagenetic effect?

paleoclimate? depositional? )




Bl Diagenetic Trends - Clay
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Mixing of cuttings in the well blur trends



Diagenetic Trends - Quartz

Quartz dissolution
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* Not all porosity is effective
* Over-estimation of porosity by log due to abundant clay
if the Montney is indeed oil-wet (Wood et al., 2015)




(Penetration limit)

' 0.003

s
> B
= B
2 K
= I
o B

Q
o S

Pore Throat Diameter (um)

o

o
(wrl/8/qw) uoisniu [enuatayig




QEMSCAN Porosity

QEMSCAN detects pores >5 um (depending on pixel size)
Porosity is two dimensional - provides estimation only

Appears as white pixels




Porosity

Stepwise regression (9 samples): R%=0.987

® ) = 3.996 - 0.108 (Calcite) - 0.24 (Muscovite) + 0.58 (Fe Oxide) + 0.035 (Total Clay)

General regression (a subset of 6 samples): R?=1.00

= 5.320 +2.272 (TOC) - 0.091 (Quartz) - 0.843 (K-Feldspar) - 0.0839
(Plagioclase) + 0.564 (Muscovite)




QEMSCAN Porosity

DEEP: 12-36-083-25W6: (67 samples)

® qs) = 9-20 - 0.08 (Total Clay) + 0.49 (TOC) - 0.52 (Fe Dolomite) + 0.037 (K-Feldspar) -
0.12 (Quartz)

RA2=0.82

SHALLOW 06-33-072-25W5: (33 samples)
®qs) = -0.795 + 0.167 (Calcite) - 0.318 (Fe Dolomite) + 0.119 (Quartz)
R"2=0.71




Summary

Distribution of iron-bearing phases suggest relationships to
stratigraphic sequences, overprinted by temperature-controlled
reactions suchas S > |
Clay-minerals have a complex relationship with feldspar
= Potassium is released from K-Feldspar to create lllite
= Sodium is released from plagioclase to create kaolinite
(possibly contributing to formation water high salinity)

Effective porosity (<5%) is controlled mostly by the presence of

o

organic matter
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