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Abstract 
 
The Mid-Continent Mississippian Limestone is an unconventional carbonate reservoir with a complex depositional and 
diagenetic history. Oil and gas have been produced from vertical wells for over 50 years, but recent horizontal activity in low 
porosity, low permeability zones have illustrated how crucial it is to understand the petrophysical characteristics to better target 
producing intervals. Because of the wide variability and complexity of pore systems in carbonate reservoirs, simple porosity and 
permeability transforms developed for siliciclastic reservoirs often provide erroneous results for carbonates. Recent research has 
only started to identify the complexity of the pore architecture observed in carbonate mudrocks and the applicability of 
conventional carbonate pore relationships to describing carbonate mudrock systems.  
 
The current study shows examples of how fundamental relationships between pore shape, porosity, permeability, and acoustic 
response differ in carbonate mudrocks with micro- to pico-porosity (<62μm diameter) compared to conventional carbonates 
with primarily macropore (256-4mm diameter) systems. Quantitative data show positive correlations exist between porosity and 
permeability, but negative to no correlation between pore shape and associated porosity and permeability. In addition, there is a 
significant shift in the acoustic response relative to values calculated from empirically derived equations for porosity in 
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carbonate mudrocks. Deviations from quantitative data trends are explained through qualitative observations of the pore types 
and differing internal pore geometries. Visual observations of the pore morphology show how post-depositional cementation can 
increase the complexity of the internal pore network by sub-dividing pores. When correlated to facies, the internal pore 
geometry helps explain deviations to general relationships between basic quantitative pore architecture measurements, porosity, 
and permeability. Although there is an added level of complexity in the pore architecture of carbonate mudrocks, there are 
fundamental relationships that exist between the pore architecture, pore shape, porosity, permeability, acoustic response, facies, 
and sequence stratigraphic framework with variable levels of predictability that, when used as an integrated data set, can be used 
to enhance the predictability of key petrophysical properties within these types of reservoir systems. 
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Conventional Carbonate Acoustic Response 

Figure Modified from Eberli et al. 2003 
and used with permission from G. Eberli 
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Carbonate Pore Types in Thin Section 

Intercrystalline Interparticle Cemented 

Moldic (Vuggy) Intraparticle Framework 



Predictable Acoustic Response 

Figure Modified from Eberli et al. 2003 
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From Anselmetti and Eberli 1999 



Acoustic Response Relationship to 
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Qualitative Permeability from Velocity  

Modified from Anselmetti and Eberli 1999 
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Digital Image Analysis:  
Link to quantitative prediction 

Color Segmentation  to 
identify the pore space 
 
 
 
Key Parameters: 
Length  
Width 
Perimeter (P) 
Area (A)[Pore Size] 
 
Perimeter/Area (P/A) 
Dominant Pore Size 
Pore Shape (ɣ) 

Figure Thornton and Grammer 2012 



Pore Architecture: Pore Size  
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Figure  and images used with permission from G. Eberli 
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Quantitative Permeability Prediction 
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Figure from Anselmetti et al.  1998 

  Quantified acoustic response 
+Quantified pore architecture 
+Quantified macro- and microporosity 
    Predictable Permeability 

Figure from Baechle et al. 2004 



Quantitative Permeability Prediction 

Figure Thornton and Grammer 2012 
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Mid-Continent “Mississippi Limestone” 
Oil and Gas Production History  

 Production began in the early 1900’s  

 Reservoir intervals vary from limestone, or dolomite-rich intervals 
to  tripolitic, nodular and bedded chert intervals 

 Horizontal drilling has revitalized production, but highlighted the 
need to better understand the reservoir architecture 

Figure modified from Harris  (1975) 



Carbonate Mudrock  
porosity and permeability range  
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Carbonate mudrock  
velocity – porosity relationship 
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Unconventional carbonate mudrock vs. 
conventional carbonate velocity response 



Pore Architecture:  
Thin Section Photomicrographs 

100mm 200mm 

50mm 50mm 

Pore Size CI 
Loucks et al. assification 

1 ml __ (2_0_12~) __ 

1 mm 

1.um 

1 nm --;:::IIIIII-~ 



Basic Pore Types Observed 
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Loucks et al., 2012 

Pore Architecture: Pore types and size 
SEM Photomicrographs 
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Loucks et al., 2012 

Pore Architecture: Pore types and size 
SEM Photomicrographs 
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Loucks et al., 2012 

Pore Architecture: Pore types and size 
SEM Photomicrographs 
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Loucks et al., 2012 

Pore Architecture: Pore types and size 
SEM Photomicrographs 
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Intergranular pore network.  

Matrix pores.  
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Pore Architecture: Pore distribution 
SEM Photomicrographs – Ion milled surface 
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Pore Architecture Data Summary 

Analysis completed: Osage County core, North-Central Oklahoma 
– 277 feet from 3147.10 – 3424.10ft bgs.  
– 305 photomicrographs analyzed using digital image analysis 

• 47 thin sections,  420 photomicrographs, 175 images analyzed for DIA 
• 15 samples,  430 photomicrographs, 130 SEM images  

Image analysis summary: 
– Pores Identified: 140,330 
– Image analysis porosity: 23-65% (biased samples) 
– Length: Nanopore to Mesopore scale 
– Width: Picopore to Micropore scale 
– Shape: slightly elongate 

Sonic velocity response: 
– 80 samples: velocity response, dry  
– 34 samples: velocity response, saturated in 35ppt NaCl brine solution 
– Vp: 4852-6333 
– Vs: 2768-3700 

XRD analysis: 22 samples  
 



Digital Image Analysis:  
Pore size distribution  

Micropore 
and smaller 
(62.5-1 µm) 



Digital Image Analysis:  
Pore size distribution (thin section) 
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Pore architecture:  
Pore size distribution (ESEM images) 
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Pore architecture:  

Digital image analysis (thin section & ESEM images) 
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Pore Architecture:  
Thin section vs. ESEM Pore Size Distribution  

31 

• Dominant Pore Size: micro- 
to nanopore range.  

• Bi-modal distribution 
between micro- and 
nanopores 



Pore Architecture:  
ESEM Detailed Pore Size Distribution  
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Facies Characterization  
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Predicting key petrophysical properties:  
Porosity and permeability, classified by facies 
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Predicting key petrophysical properties:  
Porosity and permeability, classified by facies 

y = 0.0006x + 0.0027 
R² = 0.2005 

y = 0.0003x + 0.0017 
R² = 0.0239 

0.0001

0.0010

0.0100

0.1000

1.0000

10.0000

0 2 4 6 8 10

P
e
rm

e
a
b

il
it

y
 (

m
D

) 

Porosity (%) 

Facies 1

Facies 2

Facies 3

Facies 4

Facies 5

Facies 6

Facies 7

Linear (Facies 6)

Linear (Facies 7)



Predicting key petrophysical properties:  
Porosity and permeability, classified by facies 
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Pore Architecture:  
Pore shape relationship to porosity  

37 

Inverse relationship, except in 
facies 1 and 2 

Eqn. from (Anselmetti et al. 1998) 



Pore Architecture:  
Pore shape relationship to permeability 

Positive relationship, skewed 
perspective from 2 data points.  
 
Outlier points removed shows 
no clear relationship. 



Sequence Stratigraphy:  
Predicting Porosity and Permeability 

Two unique correlations between 
porosity and permeability associated 
with the sequence stratigraphic 
framework 
 
Correlation within the 3rd order 
transgressive and regressive sequences 
 
Exceptions:  
Post-deposition alteration 



Regressive Phase:  
Highest porosity & permeability  
 
Within the regressive phase and 
at the top of 5th order cycle.   
 
Exceptions:  
Extensive post-deposition 
silicification 

Sequence Stratigraphy:  
Predicting Porosity and Permeability 



Sequence Stratigraphy:  
Predicting Porosity and Permeability 

Transgressive Phase:  
Highest porosity & permeability  
 
Within the transgressive phase 
and at the top of 5th order 
transgressive cycles.   
 
Exceptions:  
Post-deposition, hydrothermal 
brecciation. 



Conclusions 
• Sonic velocity data:  

– Significant shift in the acoustic response relative to values calculated from empirically 
derived equations for porosity in carbonate mudrocks 

– Data boundaries are the Wyllie Time Average equation and the Woods equation 

• Image analysis data:  
– Post-depositional cementation can increase the complexity of the internal pore 

network by sub-dividing pores 

– Pore architecture correlation to facies: the internal pore geometry helps explain 
deviations to general relationships between basic quantitative pore architecture 
measurements, porosity, and permeability 

– Positive correlations between porosity and permeability 

– No clear relationship between pore shape and associated porosity or permeability  

• Sequence stratigraphic framework: 
– Most predictable to locate highest porosity and permeability intervals 

• The fundamental relationships that exist in conventional carbonates are 
not well defined in carbonate mudrocks 

• An integrated data set enhances the predictability of key petrophysical 
properties within these types of reservoir systems 



Continued Work  

• Expand the data set using 4 Mid-Continent Mississippian 
Limestone cores  

Payne, County, OK; Logan County, OK; Reno County, Kansas 

– Sonic velocity response 

– Digital image analysis from thin section and ESEM photomicrograph 

– Qualitative and quantitative characterization of pore architecture  

– Identify relationships between sonic velocity, porosity, permeability, and 
pore architecture 

– Define multivariate algorithm to quantitatively predict permeability 

– Relate predictable relationships to sequence stratigraphic framework to 
reveal predictability of petrophysical properties 

• CT-scanning to view permeability in 3-D 
– Relate 3-D images to 2-D data 




