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Abstract

The Mid-Continent Mississippian Limestone is an unconventional carbonate reservoir with a complex depositional and
diagenetic history. Oil and gas have been produced from vertical wells for over 50 years, but recent horizontal activity in low
porosity, low permeability zones have illustrated how crucial it is to understand the petrophysical characteristics to better target
producing intervals. Because of the wide variability and complexity of pore systems in carbonate reservoirs, simple porosity and
permeability transforms developed for siliciclastic reservoirs often provide erroneous results for carbonates. Recent research has
only started to identify the complexity of the pore architecture observed in carbonate mudrocks and the applicability of
conventional carbonate pore relationships to describing carbonate mudrock systems.

The current study shows examples of how fundamental relationships between pore shape, porosity, permeability, and acoustic
response differ in carbonate mudrocks with micro- to pico-porosity (<62um diameter) compared to conventional carbonates
with primarily macropore (256-4mm diameter) systems. Quantitative data show positive correlations exist between porosity and
permeability, but negative to no correlation between pore shape and associated porosity and permeability. In addition, there is a
significant shift in the acoustic response relative to values calculated from empirically derived equations for porosity in
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carbonate mudrocks. Deviations from quantitative data trends are explained through qualitative observations of the pore types
and differing internal pore geometries. Visual observations of the pore morphology show how post-depositional cementation can
increase the complexity of the internal pore network by sub-dividing pores. When correlated to facies, the internal pore
geometry helps explain deviations to general relationships between basic quantitative pore architecture measurements, porosity,
and permeability. Although there is an added level of complexity in the pore architecture of carbonate mudrocks, there are
fundamental relationships that exist between the pore architecture, pore shape, porosity, permeability, acoustic response, facies,
and sequence stratigraphic framework with variable levels of predictability that, when used as an integrated data set, can be used
to enhance the predictability of key petrophysical properties within these types of reservoir systems.
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Integrated Reservoir Characterization
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Conventional Carbonate Acoustic Response
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Moldic (Vuggy) Intraparticle




® microporosity
® interparticle/crystalline porosity
® densely cemented, low porous

® intraframe porosity
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Interparticle-
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Acoustic Response Relationship to
Permeability
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Acoustic Response Relationship to
Permeability
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Qualitative Permeability from Velocity Fr
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Digital Image Analysis:
Link to quantitative prediction

Color Segmentation to
identify the pore space

Key Parameters:
Length

Width

Perimeter (P)

Area (A)[Pore Size]

Perimeter/Area (P/A)
Dominant Pore Size
Pore Shape (y)
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Figure Thornton and Grammer 2012
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Quantitative Permeability Prediction
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Quantitative Permeability Prediction
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Mid-Continent “Mississippi Limestone”

Oil and Gas Production History
Production began in the early 1900’s

Reservoir intervals vary from limestone, or dolomite-rich intervals
to tripolitic, nodular and bedded chert intervals

Horizontal drilling has revitalized production, but highlighted the

need to better understand the reservoir architecture
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Carbonate Mudrock
porosity and permeability range
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Carbonate mudrock
velocity — porosity relationship
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Unconventional carbonate mudrock vs.
conventional carbonate velocity response
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Pore Architecture:
Thm Sectlon Photomlcrographs

e

Pore Size Classification
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Basic Pore Types Observed

.‘Matrix’ surrounding pores

Pore filling clays

. Pore/void space
[I Pore filling calcite




Pore Architecture: Pore types and size
SEM Photomlcrographs
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Pore Architecture: Pore types and size
SEM Photomicrographs
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Pore Architecture: Pore types and size
SEM Photomicrographs
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Pore Architecture: Pore types and size
SEM Photomicrographs
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Pore Architecture: Pore distribution
SEM Photomicrographs — lon milled surface
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Pore Architecture Data Summary

Analysis completed: Osage County core, North-Central Oklahoma
— 277 feet from 3147.10 — 3424.10ft bgs.

— 305 photomicrographs analyzed using digital image analysis
e 47 thin sections, 420 photomicrographs, 175 images analyzed for DIA
e 15 samples, 430 photomicrographs, 130 SEM images

Image analysis summary:
— Pores Identified: 140,330
— Image analysis porosity: 23-65% (biased samples)
— Length: Nanopore to Mesopore scale
— Width: Picopore to Micropore scale
— Shape: slightly elongate
Sonic velocity response:
— 80 samples: velocity response, dry
— 34 samples: velocity response, saturated in 35ppt NaCl brine solution
— Vp: 4852-6333
— Vs: 2768-3700
XRD analysis: 22 samples



Digital Image Analysis:
Pore size distribution
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Digital Image Analysis:
Pore size distribution (thin section)

Length (pm)

1000

100

10

0.1

0.01

"I o

15 20

Perimeter/Area

25

Tm

1cm

1 nm

Loucks et al.
(2012)

— R

] Methane =0.38nm
1 Water = 0.28nm

<62.5 um

Nanopore

Picopore




Pore architecture:
Pore size distribution (ESEM images)
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G Pore architecture:
(1) Digital image analysis (thin section & ESEM images)
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Pore Architecture:
Thin section vs. ESEM Pore Size Distribution
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Pore Architecture:
ESEM Detailed Pore Size Distribution
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Facies Characterization
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Predicting key petrophysical properties:
Porosity and permeability, classified by facies
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Predicting key petrophysical properties:
Porosity and permeability, classified by facies
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Predicting key petrophysical properties:
Porosity and permeability, classified by facies
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Pore Architecture:
Pore shape relationship to porosity
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Pore Architecture:
Pore shape relationship to permeability

Permeability (mD)
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Sequence Stratigraphy:
Predicting Porosity and Permeability
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Sequence Stratigraphy:

Predicting Porosity and Permeability
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Sequence Stratigraphy:
Predicting Porosity and Permeability
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{T) + Sonic velocity data:

Conclusions

Significant shift in the acoustic response relative to values calculated from empirically
derived equations for porosity in carbonate mudrocks

Data boundaries are the Wyllie Time Average equation and the Woods equation

* Image analysis data:

Post-depositional cementation can increase the complexity of the internal pore
network by sub-dividing pores

Pore architecture correlation to facies: the internal pore geometry helps explain
deviations to general relationships between basic quantitative pore architecture
measurements, porosity, and permeability

Positive correlations between porosity and permeability
No clear relationship between pore shape and associated porosity or permeability

e Sequence stratigraphic framework:

Most predictable to locate highest porosity and permeability intervals

 The fundamental relationships that exist in conventional carbonates are
not well defined in carbonate mudrocks

* Anintegrated data set enhances the predictability of key petrophysical
properties within these types of reservoir systems



Continued Work

* Expand the data set using 4 Mid-Continent Mississippian
Limestone cores

Payne, County, OK; Logan County, OK; Reno County, Kansas

— Sonic velocity response

— Digital image analysis from thin section and ESEM photomicrograph
— Qualitative and quantitative characterization of pore architecture

— ldentify relationships between sonic velocity, porosity, permeability, and
pore architecture

— Define multivariate algorithm to quantitatively predict permeability

— Relate predictable relationships to sequence stratigraphic framework to
reveal predictability of petrophysical properties

* CT-scanning to view permeability in 3-D
— Relate 3-D images to 2-D data





