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Abstract

Hydrothermal fluid flow in Ordovician, Mississippian, and Pennsylvanian reservoir rocks of the Midcontinent is partially responsible for
generating the porosity in those reservoirs (Ramaker et al. 2014), as well as hydrocarbon migration and local thermal maturation. The
hydrothermal fluid flow occurred in three late stages (King, 2013). Fluid flow was controlled by stratigraphic discontinuities, fault and fracture
systems, and temperature-controlled density differences. These controls are critical for localization of some of the reservoirs in the
Midcontinent.

Ordovician, Mississippian, and Pennsylvanian strata in Kansas all show fracturing, megaquartz, silica dissolution, carbonate dissolution,
baroque dolomite, MVT minerals, and calcite after stylolitization. Cathodoluminescence petrography, fluid inclusions, &’Sr/2°Sr, and 520
indicate hydrothermal fluid flow affected Ordovician-through-Pennsylvanian stratigraphic units. The history is simplified into three stages of
hydrothermal fluid flow (86-144°C). All show evidence of thermal pulses, suggesting tectonic valving.

Fluid inclusion data indicate Stage 1 was from brines near seawater salinity, interpreted as connate fluids migrating out of the Anadarko and/or
Arkoma basins, likely during the Pennsylvanian or Early Permian. Fluids were associated with a separate gas phase, and they precipitated
megaquartz.

Stage 2 led to precipitation of barogue dolomite. Fluid inclusion data indicate high salinities (20 wt. %) and ®'Sr/%Sr indicate advective fluid
flow across long distances. 8*°0 data indicate the Ordovician-Mississippian section acted as an aquifer in vertical communication, leading to
warmer fluids and preferred fluid flow toward the top of the Mississippian. The shale-rich Pennsylvanian section acted as a leaky confining
unit. This stage of fluid flow was associated with oil migration and likely occurred late in the Permian or after.
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Stage 3 of hydrothermal fluid flow was complex and is recorded by calcite cements. Spatial variation of '%0 and ®'Sr/**Sr indicate cessation of
advective fluid flow and initiation of localized vertical fluid flow, possibly directly out of the basement. Comparison of fluid inclusion
temperature and salinity data to modern reservoir conditions indicates that this stage clearly predates the current fluid flow and thermal regime,
but played a part in evolution of the reservoir system.

The first two stages of hydrothermal fluid flow are associated with fracturing, silica dissolution, and carbonate dissolution. Much of the
porosity, typically assumed to originate from subaerial weathering, may have been generated by these late hydrothermal fluids. The fluids
followed fracture systems and were concentrated along the tops of hydrothermal aquifers by stratigraphic discontinuities and temperature-
controlled density differences. This model for hydrothermal porosity formation helps to explain the spatial variation in reservoir quality in the
Mississippian and leads to an enhanced model for locating the best producers. The Mississippian to Cambrian-Ordovician section acted as a
regional aquifer and Pennsylvanian acted as a leaky confining unit. In the regional aquifer cross-formational connections allowed lower
density, warmer fluids to concentrate at the top of the aquifer. Reservoir porosity is partially controlled by hydrothermal fluid migration,
enhancing the porosity in areas where fractures and faults led to preferred hydrothermal fluid flow, especially close to the top of the regional
aquifer. Better porosity is related to late structure and stratigraphic control on fluid flow.

For the third stage of hydrothermal fluid flow, further study is necessary. A driver could be localized faulting and fracturing associated with
Laramide or other deformation. Fracturing and vertical fluid flow clearly could have had an impact on late hydrocarbon migration. As these
systems are highly localized, their identification may be key in predicting location of some of the best producers.
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Purpose

Study of basement through Pennsylvanian in

Midcontinent, USA, shows three-stage evolution

of hydrothermal system
Concentration of hydrothermal alteration

immediately below unconformities caused by
density-controlled advective fluid flow

Study demonstrates that porosity associated with
unconformities is much later than development
of meteoric karst and caused by a predictable
fluid distribution in hydrothermal aquifers
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Stratigraphy
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Arbuckle Group Late Paragenesis

Diagenetic Events

Early Stage

Late Stage

1. Original Deposition
2-3-4. Early Dissolution

2-3-4. Replacement Dolomite (RD)
2-3-4. Anhydrite (A)

5. Early Dolomite Cements (EDC)
6. Silicification (RC)

7. Chalcedony (Ch)

8. Karsting (Carbonate Dissolution)

9. Brecciation and collapse features
10-11. Middle Dolomite Cements (MDC)

10-11. Pyrite (P)
12. Megaquartz 1 (MQT1)

13. Internal Sediment (IS)
14-15. Stylolitization & emanating fractures

14—15._Fracturing F)
16-17. Silica Dissolution
16-17. Carbonate Dissolution

18. Megaquartz Cement 2 (MQ2)

19. Baroque Dolomite (BD)
20. Petroleum Migration
21-22-23. Galena (G)
21-22-23. Sphalerite (S)

21-22-23. Calcite Cement (CC)




Late-Stage Paragenesis associated with
fractures and porosity enhancement




Porosity Enhancement in Silica Phases




Late Mineral Phases - Hydrocarbon Migration
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Similar Late-Stage Paragenesis in All Units
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Fluid Inclusion Data — Hydrothermal
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Fluid Inclusion Data — Hydrothermal
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Stage 1 - Hydrothermal Flow

inity wt. 9 .
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Stage 1 - Advective Fluid Flow - Megaquartz

Late Pennsylvanian (before Permian brine reflux)
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Stage 2 - Hydrothermal Flow

Diagenetic Events |
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Arbuckle Dolomite — 8/Sr/8°Sr vs. Temp.

Arbuckle Group Baroque Dolomite 87Sr/86Sr vs. 6180
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Thermal Structure - Stage 2 Regional Fluid Flow
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Advective Fluid Flow — Stage 2
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Stage 3 - Hydrothermal Flow
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Stage 3 - Calcite 8/Sr/2Sr

Depth (Ft)

Arbuckle Group and Mississippian 87Sr/2¢ Sr vs. Depth
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Stage 3 - Fracture-Controlled Hydrothermal
Fluid Flow and Calcite-Laramide?
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Conclusions

Three-stage evolution of hydrothermal systems

Two stages of regional advective flow

* Mississippian to Cambrian-Ordovician section acted as a
regional aquifer and Pennsylvanian acted as a leaky confining
unit.

* Inthe regional aquifer cross-formational connections allowed
lower density, warmer fluids to concentrate at the top of the
aquifer, something predicted on the basis of density

Better porosity is related to late structure and
hydrothermal flow immediately below unconformity

A third stage of hydrothermal fluid flow was localized by
later (possibly Laramide) faults and fractures and led to
localized hydrothermal systems





