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Abstract

One of the important challenges in seismic inversion is to resolve finer structures from band-limited seismic data. Reservoir-oriented full-
waveform inversion has the potential to deliver high-resolution quantitative images and is a promising technique to obtain macro-scale physical
properties of the subsurface (Ashnashari et al., 2012). Because full-waveform inversion accounts for the entire wavefield, the seismic
modelling embedded in the inversion algorithm honors the full physics of wave propagation (Virieux and Operto, 2009). This makes the
technique potentially an effective instrument for improving the characterization of complex geological settings (Plessix et al., 2010). Like for
most geophysical application, prior information such as data collected in wells is available and should be used to improve the result. For this
purpose we propose a new strategy for including prior geological knowledge in full-waveform inversion, which will ensure an even higher
resolution in the final images. This new scheme does not constrain the inversion but uses blocky models drawn from the prior distribution as a
starting point for the inversion. After an unconstrained inversion, the non-blocky result is re-interpreted in terms of the prior model. This can be
seen as a Bayesian update in iterative non-linear inversion, this process is repeated after every iteration. This updated blocky model will be
used as a starting model for the next iteration. This leads to a guided, nonlinear inversion process, where a geological scenario is proposed
between two linear iteration steps. Given the prior probabilities and covariances, we are able to interpret the presence or absence of thin layers
that otherwise cannot be detected using only band-limited seismic data. This scheme is demonstrated on a high-resolution synthetic model
based on the Book Cliffs outcrop in Utah (USA).
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Obijectives

« Downscale the outcrop-based Book Cliffs reservoir model by
Tetyukhina et al. (2014)

* Scenario Testing

- Geological concept (scenario) as a starting point for the
inversion.

- Geological guidance to the inversion.

- Improve the static models using parallel blocking
process.

- Assign probabilities to different scenarios.
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« Downscale the Geological model
« Scenario testing

« Synthetic demonstration
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The Book Cliffs Model
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CP: Coastal Plain; DC: Distributary Channels; CO: Coal; FU: Upper Shoreface;
IV: Incised Valley; ML: Middle to Lower Shoreface; OT: Offshore Transitional;
OF Offshore Mudstones
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JASON

Lithogroups
Claystone(Marine)
Claystone(Non-marine)
SS(Marine)
SS(Non-marine)
VFS(Marine)

VFS(Non-marine)

o

FS(Marine)

FS(Non-marine)

MS(Marine)

MS(Non-marine)

cs

Coal

CS: Coarse Sandstone; MS: Medium Sandstone;
FS: Fine Sandstone; VFS: Very Fine Sandstone; SS: Siltstone

Presenter’s notes: Here we can see that the sand unit has been divided into smaller units by the existence of claystone which is very important. Also the interfingering has been added in the parasequence which
we believe it is a very good stratigraphic trap for hydrocarbon reservoirs.
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The Resulting p/Vp/Vs Models

Presenter’s notes: The lithogroup model then will be populated with the different properties.
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« Downscale the Geological model
« Scenario testing

« Synthetic demonstration
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Blocking
with prior

Unconstrained
result

Starting model
for next iteration

« We use the geological knowledge e.g. from logs to draw starting

models for the inversion, but then let the solution evolve, unconstrained
by a forced parameterisation.

« After inversion the result can automatically be blocked as a squared log
in terms of the geological scenario. This will then be used as the
starting model for the next iteration.
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Propertyvalue —

Prior model .
i I @

Unconstrained inversion result K;,,,,

Best fit blocky model, based on a
layered geological scenario with prior
probabilities p;.

This becomes the starting model for
the next iteration.

0

<« Depth




Outline

2
TUDelft

P
innn
Delphi

« Downscale the Geological model
« Scenario testing

« Synthetic demonstration
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Building predictive static models occurs on the basis of
geological knowledge (well logs, seismic data,
interpretations, models)

The static models include spatial variations in lithology

Static reservoir models are improved through the analysis
of dynamic data — an iterative process.

This approach depends heavily on the quality of the static
models.
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Inversion Results for Scenario I
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Unconstrained Inversion Result
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The Blocking Result
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The Blocky Models vs. the Scenario Delphi
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» Bringing in prior information in the form of a blocky model
with means and co-variances for all layers, based on
geological knowledge, can bring out features beyond
seismic resolution as long as they are consistent with the

band-limited inversion result.

» The blocking process improves the static model iteratively

using the full-waveform seismic data.

+ Different scenarios can be tested and assigned probabilities
according to “How well the scenario describes the data”.
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