Elemental Analysis as a Tool in Determining Wellbore Stability Issues: Marcellus Shale Play, SW Pennsylvania

Charles Moyer¹, Milly Wright², and Nahysa Martinez²

Search and Discovery Article #41692 (2015)**
Posted October 15, 2015

*Adapted from oral presentation given at AAPG 2015 Annual Convention and Exhibition, Denver, Colorado, May 31 – June 3, 2015
**Datapages © 2015 Serial rights given by author. For all other rights contact author directly.

¹Geology, Range Resources Corporation, Canonsburg, Pennsylvania, USA (cmoyer@rangeresources.com)
²Chemostrat, Inc., Houston, Texas, USA

Abstract

Solutions to deviated and horizontal wellbore stability issues can be complex. Problems such as lost circulation, stuck pipe, pack off, tight hole and enlarged cuttings can occur while drilling. Drilling techniques, mud pump pressure surges, mud type, weights and additives, cleanup cycle design, borehole azimuth, structure, anisotropic stresses and formation characteristics may be contributing factors in any combination. Determining a wellbore's failure point is a critical first step toward finding a solution to a stability issue. Borehole imaging-while-drilling tools help but can be costly since an operator would need to routinely run the tools in wellbores in order to “catch” a wellbore failure. Analysis of breakdown/breakout mud weight failure envelopes help as predictive tools but may not be definitive in an actual wellbore failure situation. Wellbore “rubble” (enlarged rocks exiting the well that were not caused by cutting action from the drill bit) can be elementally/compositionally analyzed more precisely to determine where in the rock column the failure occurs. X-Ray Diffraction (XRD) works well to determine bulk mineralogy; however, this technique can fall short when trying to differentiate various organic shale sequences and parasequences. Elemental analysis and chemostratigraphy offer a more in-depth analysis to determine sequence stratigraphic units in mud rocks where type sections are available. This paper details a case study where the utilization of elemental analysis and chemostratigraphy to successfully pinpoint a series of wellbore failure events in the Marcellus Shale Play in southwestern Pennsylvania.
ELEMENTAL ANALYSIS AS A TOOL IN DETERMINING WELLBORE STABILITY ISSUES
MARCELLUS SHALE PLAY, SW PENNSYLVANIA

AAPG ACE 2015
Denver, CO
June 1, 2015
AREA OF INTEREST – SW PA MARCELLUS PLAY
GEOLOGIC VARIATIONS WITHIN THE MARCELLUS SHALE, WASHINGTON COUNTY, PA

- **BTU**: Maps showing BTU contours with stars indicating wells with wellbore stability issues.
- **%Ro**: Maps showing %Ro contours with stars indicating wells with wellbore stability issues.
- **Condensate/Gas Ratio (BC/MMCF)**: Maps showing condensate/gas ratio with stars indicating wells with wellbore stability issues.
- **Onondaga Structure**: Maps showing the Onondaga Structure with stars indicating wells with wellbore stability issues.
Tabular Marcellus rubble. Scale 1 block = 1/4". Large triangle piece at lower left is 3" long.

PROBLEM-SOLUTION-APPLICATION

1) **PROBLEM** – Increased rubble events occurring while drilling in condensate-rich Marcellus area.

2) **PROBLEM** - Preconceived bias as to where the rubble originated.

3) **SOLUTION** - Geology Team needed to perform lab and geosteering analysis to determine the role the rocks were playing in wellbore failures.

4) **SOLUTION** - Drilling Team needed to review drilling equipment and procedures and make revisions as necessary.

5) **APPLICATION** - Reconvene and determine an action Plan.

6) **DRILLING AND GEOLOGY TEAMS WORK TOGETHER TO SOLVE WELLOBRE STABILITY PROBLEMS**.
1) **DECREASE IN THERMAL MATURITY** – Rocks change character in an updip direction: increasing TOC, condensate yield and ductility, decreasing thermal maturity, depth, thickness and pressure gradient.

2) **LANDING ZONES** – Due to variations in BTU and condensate content, the geology dept. altered landing zones and target intervals within the Marcellus to seek larger pores.

3) **DRILLING RIGS** – Range contracted two Super Single drilling rigs at about the same time we moved into the condensate rich area. These rigs were equipped with smaller ID drill pipe (4 1/2”), smaller mud pumps and hook load. (Also less expensive, smaller footprint and faster moving).
VARIABLE PORE THROATS WITHIN THE MARCELLUS

High BTU Area

Low BTU Area

Significant change in characteristics of successful target zones

Pores in the 1,500 to 2,000 nm range

Pores in the 10 to 20 nm range
NOTE: Type log was landed in Oatka Creek and did not penetrate Union Springs.
RUBBLE ZONE A, Package 2, Unit 2.3 – Lower Mahantango (above Purcell)

1) Higher Th/U - (less organics, not Marcellus)
2) Higher P (phosphorous)
3) Higher Th/Al
4) Lower EF (enrichment factor, not Marcellus)
5) Lower U (not Marcellus)
6) Lower Si/Al (not Package B, Rhinestreet)
RUBBLE ZONE “B” IDENTIFIERS

RUBBLE ZONE B, Package 1, Unit 4, Cherry Valley

1) High Ca - Limestone
2) High Ca/Al - Limestone
3) Mg and Mn values – Cherry Valley is more similar to these values than the Tully or Purcell.
RUBBLE ZONE “C” IDENTIFIERS

RUBBLE ZONE C, Package 1, Unit 3 – Middle of Sequence 2B

1) EF - Intermediate. Not very good indicator.

2) K/Al – High, an indicator of Package 1, Unit 3.

3) Zr/Al – Low, an indicator of Package 1, Unit 3.

4) U/Al – High, Marcellus source rocks.
RUBBLE ZONE D, Package 1 Unit 2
– Sequence 2A, and a few feet of the base of 2B

1) EFV and U/Al – Very high
(Marcellus, source rocks).

2) K/Al – High, suggest Package 1, Units 2 and 4.

3) Zr/Al – Low, tags to Package 1, Units 2 and 4.

4) Fe/Al – Intermediate, tags to Package 1, Units 2 and 4.
CHEMOSTRAT “RUBBLE ZONES”

Typing of rubble to Chemostrat Packages.

Next step is to match Packages to geosteering.
Rubble “A” Example – SM1B land (Purcell Ls)

Suspect zone not “failure” interval. Failure interval at base of the curve. Suspect zone was penetrated in the middle of the lateral and was originally blamed for the well failure.
Rubble “A” Example – SM1B land (Purcell Ls)

Suspect zone not “failure” interval. Failure interval at base of the curve. Suspect zone was not penetrated in the wellbore.
Rubble “B” Example – S2B Land

First rubble came @ 11,207’ and was a carbonate, possibly the Cherry Valley (Rubble Zone “B”)

Suspect zone not “failure” interval. Note position of failure zone at the base of the curve and in the lateral.

= Area matching Rubble Zone “C” of Chemostrat study.
Predominant rubble in well bore.
Rubble “C” Example – S2A land

Suspect zone not “failure” interval. Note position of failure zone at the base of the curve.
Rubble “C” and “D” Example - S2A/B land

Suspect Failure Zone C

Failure Zone D

During a cleanout cycle at 8,412’ saw rubble from Zone “D”

Suspect zone not “failure” interval. Note position of failure zone at the base of the curve.
1) Due to past experiences, the Geology and Drilling Teams suspected the “Rubble Zone” (above Oatka Creek) as the main zone of failure in wellbores in the condensate-rich Marcellus area. This is the uppermost consistent organic layer of the Marcellus.

2) With cuttings from a type well and from multiple failed wellbores, elemental analysis was utilized as a relatively inexpensive tool to identify zones of failure.

3) Four separate packages were cataloged as rubble zones. The study determined that the wellbores were failing in the base of the curve and not in any particular geologic sequence. The “Rubble Zone” is no longer termed the “Rubble Zone”!

4) Armed with this information the Company was able to forge ahead with solutions, including bigger OD drill pipe and revisions to clean-up procedures.