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Abstract

Hydrocarbon-bearing reservoirs in heterozoan carbonate deposits currently lack necessary predictive reservoir-analog models. Neogene
complexes of the Cabo de Gata region of SE Spain provide ideal outcrops of heterozoan carbonates preserved as fining-upward cycles and
fining-up-depositional-dip progradational clinothems. This pattern differs significantly from the coarsening-upward shoaling cycles of
photozoan carbonates, suggesting the fundamental differences of heterozoan and photozoan carbonate reservoir architecture. Study of multiple
outcrops of Miocene and Pliocene carbonates shows there are four fundamental cycle types. The cycles are documented using vertical and
time-equivalent, lateral stratigraphic sections to provide a 3-D representation of facies. Each cycle contains coarse rhodolith and bivalve-rich
gravel facies at the base, representing in situ production in deeper water. These facies systematically fine upward into sand-sized bioclastic
facies that result from wave abrasion in shallower water, indicating a shoaling-upward origin for each cycle. Petrographic and petrophysical
analyses allow for the quantification of sedimentologic variables and their control on reservoir character, as well as evaluation of geologic
controls on reservoir-analog properties. Analyses include grain size and sorting, origin of sediment supply, grain constituents, abrasion
parameters, mineralogy, and diagenesis as they relate to and are controlled by the shoaling- and fining-upward cycle. Preliminary porosity
analyses demonstrate that the basal and cycle-capping facies contain the highest porosity at 26—-29%, whereas medially deposited coarse-
grained facies contain 13—19% porosity, and with burial, may act as potential baffles to fluid flow. The main controls on porosity distribution
appear to be grain sorting and the abundance of coralline algae. Analysis of the extent of diagenetic alteration correlates to grain size, and
therefore enhances variation in reservoir quality throughout cycles. We propose that the shoaling- and fining-upward cycle could be used as a
fundamental object-based unit for construction of subsurface geomodels in heterozoan reservoirs. Property modeling in Petrel will be used to
develop 3-D reservoir-analog models for application. These results provide a vital reservoir unit and data applicable to recent discoveries in
offshore Vietnam and Perla Field, Gulf of Venezuela, as well as application to future discoveries of heterozoan reservoirs.
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Significance

Heterozoan carbonates are widely distributed, but
poorly understood.

Heterozoan carbonates form predictable depositional
patterns distinct from photozoan carbonates.

Currently reservoir-analog models are lacking, and
there are few geologic models.

This research provides the following results:
— Stratigraphic architecture

— Quantification of sedimentologic variables
— Petrophysical values and their controls

— Reservoir-analog models



Key Findings

Distinctive depositional patterns representing transgressive-
regressive cycles.

Depositional trends are governed vertically by grain size and
laterally by grain constituents and grain size.

Heterozoan carbonates are potentially highly economic
conventional hydrocarbon reservoirs.

Outcrop analog permeability values average 100s of
millidarcies and ~35% porosity.

Petrophysical values are governed by predictable patterns of
grain size, grain constituents, and diagenesis.



Overview of Heterozoan
Carbonates

Heterotrophic filter
feeders and coralline
algae

Nutrient dependent
High energy
Primarily calcite

High abrasion and
bioerosion
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Geologic Setting
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Geologic Setting
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Transgressive-Regressive Cycles:
Ricardillo Area-Miocene
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Stratigraphic Architecture

Building Blocks of Transgressive-Regressive Cycles

Depositional Facies
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Coarse Globular Bryozoan-Clam PS
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Stratigraphic Architecture

Building Blocks of Transgressive-Regressive Cycles

Proximal

Depositional Facies

Fine Bryozoan-Echinoid PS

Fine Bryozoan-Bivalve PS

Fine Bivalve-Coralline Algae PS

Coarse Bryozoan-Clam PS

Coarse Bryozoan-Pecten PS .
edial

8mm Pecten Bivalve PS

Coarse Globular Bryozoan-Clam PS

20mm Pecten Bivalve PS
Coarse Coralline Algae-Bivalve PS

Coarse Rhodolith PS

Fine Bioclastic PS
Massive Hemipelagic WS
Bedded Hemipelagic WS 1 0

m



Stratigraphic Architecture

Building Blocks of Transgressive-Regressive Cycles

Proximal

Depositional Facies

Fine Bryozoan-Echinoid PS

Fine Bryozoan-Bivalve PS

Fine Bivalve-Coralline Algae PS

Coarse Bryozoan-Clam PS

Coarse Bryozoan-Pecten PS .
edial

8mm Pecten Bivalve PS

Coarse Globular Bryozoan-Clam PS

20mm Pecten Bivalve PS
Coarse Coralline Algae-Bivalve PS

Coarse Rhodolith PS

Fine Bioclastic PS
Massive Hemipelagic WS
Bedded Hemipelagic WS 1 0

m



Stratigraphic Architecture

Building Blocks of Transgressive-Regressive Cycles

Proximal

Depositional Facies

Fine Bryozoan-Echinoid PS

Fine Bryozoan-Bivalve PS

Fine Bivalve-Coralline Algae PS
Coarse Bryozoan-Clam PS
Coarse Bryozoan-Pecten PS

8mm Pecten Bivalve PS

Coarse Globular Bryozoan-Clam PS

20mm Pecten Bivalve PS
Coarse Coralline Algae-Bivalve PS

Coarse Rhodolith PS

Fine Bioclastic PS
Massive Hemipelagic WS
Bedded Hemipelagic WS 1 0

m



Stratigraphic Architecture

Building Blocks of Transgressive-Regressive Cycles

Proximal

10m

Depositional Facies \
Fine Bryozoan-Echinoid PS

Fine Bryozoan-Bivalve PS =
Fine Bivalve-Coralline Algae PS \

Coarse Bryozoan-Clam PS

Coarse Bryozoan-Pecten PS

8mm Pecten Bivalve PS

Coarse Globular Bryozoan-Clam PS
20mm Pecten Bivalve PS

Coarse Coralline Algae-Bivalve PS

Coarse Rhodolith PS

Fine Bioclastic PS

Massive Hemipelagic WS
Bedded Hemipelagic WS 1 0
m



20

10

Max Flooding Facies  Shoaling Facies

Initial Flooding Facies

Miocene Cross Section

Omm

10 20
Grain Size

o

Shoaling Facies

Max Flooding Facies

Omm 10 __ 20
Grain Size

=]
o

Shoaling Facies

o

MFF Dbr MFF Debrite Flooding Facies

Bryozoans & Echinoids

Bivalves & Bryozoans

Omm

10
Grain Size

Bivalves & Coralline Algae

20



Textures of Cycles
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Fine-grained Bryozoan-Echinoid Packstone Coarse-Grained Bryozoan-Bivalve Packstone

e Abraded grains * Whole globular bryozoans and unabraded

e Average grain size ~¥2mm bivalves

* Moderately well sorted e Average grain size ~15mm

* Diverse grain constituents * Poorly-moderately sorted

* Higher energy environment * Relatively homogenous constituents

* Fine shoaling facies deposited at/near * Coarse facies (>45m) represent a mixture of

wave base ~30m. in situ and transported deposition.



Diagenetic Facies




Diagenetic Facies




Diagenetic Facies
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Petrophysical Dataset
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Depositional Facies
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ize and Petror
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Petrel Facies Model

590000

16 pseudosections based on outcrop

Paleotopography
Additional pseudosections and further confined zones are required to

achieve more geologically sound results.




Predictive Facies Modeling
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Porosity Distribution Model
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Summary

Transgressive-regressive cycles in heterozoan carbonates
form cycles composed of predictable coarsening- and
fining-upward grainy facies.

Predictable depositional trends are governed vertically by
grain size and laterally by grain size and grain constituents.

Heterozoan carbonates have potential to form highly
economic hydrocarbon reservoirs.

Petrophysical values are governed by grain size, grain
constituents, and diagenesis.
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