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Abstract 

 

With the rapid changing economic environments associated with defining new viable oil and gas plays in a mature region, attention has turned 

to the statistical analysis of all of the available data (i.e. big data). These studies have been on basin-wide through individual play scales. For 

the most part, the tools used are statistical, geostatistical and multivariate in nature. Oftentimes, the user either is given a toolset found within a 

larger program or works with one of the many fine programs available on the market. Even with a deep understanding of the myriad of 

assumptions associated with of these approaches, it is difficult to extract all but the most obvious results from the data let alone the more thorny 

questions on how to quantify the economic risk. 

 

A common workflow is to gather in the best data available (e.g. geologic, geophysical, geochemical, log-based), create multiple layers/surfaces 

of geostatistically-mapped information and then perform some appropriate multivariate analysis. A great many of the assumptions associated 

with the common multivariate techniques are based on the necessity of the data being derived from either one or a fixed number of known 

populations. With big data, the verification of these assumptions is often overlooked resulting in statistically ambiguous or difficult to validate 

results. An extra step in the workflow needs to be added with these cases - partitioning the data in an appropriate way and analyzing each 

partition separately before recombining to produce a final risk map. Recognizing when this partitioning is needed requires visual, statistical, 

geostatistical and deterministic techniques, as described below. 

 

This study consisted of a large data set of well-based and geophysical data (gravity and magnetic) in several counties in northwest Kansas. In 

this area, the early Paleozoic rocks are likely dominated by basement tectonics at the time of deposition and the later Paleozoic formations 

appear overlie the earlier rocks including their related fault/fracture zones. After recognizing the visual hints that data partition was appropriate, 

computer programs designed for data partitioning (Polytopic Vector Analysis-based programs including Hyperplanar Vector Analysis, Fuzzy 

and Hard Clustering including Fuzzy N-Varieties) were applied. The results showed that partitioning the data produced a more refined 

probability of success than could be defined by the multivariate analysis alone. Key variables tied to reservoir quality were also defined that 
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have been used to increase understanding of both new prospects and potentially increase reservoir production for known fields. This increased 

knowledge directly leads to a more confident economic risk assessment in a mature area. 
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Overall Goals of Larger Project 

• Rapid exploration of a mature areas 

– Define locations in a region known by a company 

– Rapid evaluations in new regions  

• Make an assessment of the reservoir quality of the 

rock and type of reservoir (fractured, stratigraphic, 

structural, fluid flow parameters) 

• Give the engineer as much information as possible for 

defining a completion plan 

• Find the “next-best” well location (forward modeling) 

• Determine a realistic risk assessment of success and 

failure  

 



Generalized Vision of the Larger Analytic 

Workflow 

GEO-DATA: Includes geophysical, petrophysical (logs), seismic and other available data 

ENGINEERING AND PRODUCTION DATA: All completion and production information 



The Problem 

• Given a set of data used to determine the 

probability (risk) of finding a producing well 

location for any given area, overlapping or 

adjacent areas do not necessarily 

correspond to each other  

 

• Put another way, what is the ideal size of a 

data set to analyze for any given area? 

• When and how far can we extend 

information beyond wells in an area? 



The Problem – Map Visual 

County A County B 

Counties 

Analyzed 

Separately 

County 

Overlap 

Analyzed 

Separately 

Probability (risk) maps of finding a productive Lansing well 

Scale: Each box  

approx. 1x1 mile 



The Problem – Data Visual 

Subset of cross-plotted 

variables that show 

definite data structure 

(color added for visual 

clarity) 

Created using JMP  Pro   

If cross-plots show non-

normal relationships, the 

data structure must be 

addressed  



The Problem – Data Visual 

Created using JMP  Pro  
 

Plot of data in Principle Component Space 

Plot of well data in space 

defined by first 2 principle 

components: Note the non-

normal data distribution 

Plot of well data in space 

defined by first 3 principle 

components: Note the multi-

planar nature of the data 

Color, circles and ellipsoids added for visual enhancement 



The Issue – What does it mean? 

• The subsurface geology varies across the 

region (i.e. rocks, geophysics, fluid migration 

pathways, geologic history, etc.) 
 

•Any defined model must take into account 

this spatial and temporal variation (i.e. similar 

zones can be productive for different reasons 

in a region and multiple models must be 

created and applied) 
 

• Could also be that the data are of low quality 

(assumed not to be true as the project has 

been successful for oil exploration) 



Solutions(?): Approaches to Evaluate 

All the algorithms will be briefly discussed 

and all are unbiased unsupervised algorithms. 

They all address data structure. 

 

•Hard Clustering (k-Means clustering) 

JMP Pro 

•Fuzzy (Soft) Clustering (Fuzzy k-Means) 

Revised program from Bezdek, et. al. (1984) 

•Fuzzy N-Varieties 

Based on Bezdek (1981) 

•Vector Analysis (PVA and HVA) 

Based on multiple sources (see references) 



Evaluation Criteria for each Approach 
Criteria (statistical) for evaluation of each of these 

techniques include the following: 

 

• The percentage of wells that were productive that 

were identified as productive (goal of this project) 

 

• The percentage of wells that were not productive 

that were identified as non-productive  

 - Note that the definition of non-productive 

   has changed over the 80+ years of data    

   collection – less so the productive wells 

 

• The Relative Model Score = (# correctly identified 

wells)÷(total number of wells) 



Hard Clustering 

MEMBERSHIP MATRIX 

SAMPLE Cluster 1 Cluster 2 

1 1 0 

2 0 1 

3 0 1 

 1 or 0 1 or 0 

Cluster 

Centers 

S1 

S2 

S3 

Cluster 1 

Cluster 2 

Every data point must 

belong to either Cluster 1 or 

Cluster 2 based on distance 

to each cluster center 

Membership function for 

samples S1, S2 and S3 for 

hard clustering  

Note that extreme data can have a 

major effect on the placement of 

the cluster centers and it is not 

easy to determine an extreme 

point in large dimensional space. 



Fuzzy (Soft) Clustering 
MEMBERSHIP MATRIX 

SAMPLE Cluster 1 Cluster 2 

1 0.95 0.05 

2 0.38 0.62 

3 0.2 0.8 

 [0,1] [0,1] 

Fuzzy 

Cluster 

Centers 

Center 

of Hard 

Cluster 

Cluster 2 

S1 

S2 

S3 

Every data point has a 

‘membership’ in all the other 

clusters based on a non-linear 

distance to each cluster center 

Membership function for 

samples S1, S2 and S3 for 

hard clustering  

Note that extreme data such as 

the red circled triangle on the 

upper left have minor effect on the 

placement of the cluster centers 

(hard cluster center shown by 

blue dot) 



Fuzzy N-Varieties Clustering 

MEMBERSHIP MATRIX 

SAMPLE Cluster 1 Cluster 2 

1 0.98 0.02 

2 0.38 0.62 

3 0.2 0.8 

 [0,1] [0,1] 

Fuzzy 

Cluster 

‘Centers’ 

Line 

Segment 

Cluster 2 

S1 

S3 

S2 

Example in 2D of clustering 

about a line segment (blue) 

and a cluster centroid (red) 

Example of a corresponding 

membership matrix for the 

data on the left 

Note that extreme data such 

as the red circled triangle on 

the upper left have minor 

effect on the placement of 

the line segment 



PVA and HVA 
Both methods based on vector analysis in unit sphere 

(hypersphere) as opposed to centroid-based approaches (i.e. 

PCA, Factor Analysis). The vector analysis approach 

produces results in the raw measurement units. 

Original 

Data 

Original 

Data - Mean 

Unit 

Vector 

Translation 

of the data 

to mean 

position 

For PCA based techniques, the 

mean is subtracted from the data 

and the procedure continues  

For PVA and HVA, the data are 

projected into the unit sphere and 

then the procedure continues 



PVA versus HVA 
PVA requires row sum to be a constant value (i.e. 100%, 

1.0) whereas HVA does not have that requirement. HVA 

was used in this study. 

Constant sum data always fall in a plane 

(hyperplane) parallel to this plane 

(hyperplane); examples include % data 

such as grain size and composition 

Non-constant sum data fall on a plane 

(hyperplane) at an oblique angle to the 

constant sum plane (hyperplane); 

examples include seismic, tops, logs.  



Data Used in this Study 
Data include: 

• Subsurface elevations of key formations 

• Gravity, magnetic and elevation data 

• Derivatives (1st and 2nd) of gravity and 

 magnetic data 

• Directional vector of the derivative gravity 

 and magnetic data 

• Producing/non-producing   

 24 Variables 

 Each variable was independently 

    scaled (scaling depended on technique) 

 Over 3400 wells in data 

 



RESULTS 



Hard Clustering – Key Variables 

Note the role of faulting/fracturing in most areas 

Number of Clusters = 7; Criteria: Cubic Cluster Criteria (CCC) 

1st Derv. Grav. 

Stone Corral 

2nd Derv. Mag. 

Dir. 1st  Derv. Mag. 

2nd Derv. Mag. 

1st Derv. Grav. 

Gravity 

Magnetic 

2nd Derv. Mag. 

Gravity 

Lansing 

Topeka 

1st Derv. Grav. 

Dir. 1st  Derv. Grav. 

Magnetic 

Lansing 

Topeka 

Gravity 

Base of the Kansas City 

Dir. 1st  Derv. Mag. 

Dir. 2nd Derv. Grav. 

Colors represent 

individual regions 

across 2 counties 



Fuzzy Clustering – Key Variables 

Note the role of faulting/fracturing - less than Hard Clustering 
Number of Clusters = 7; Criteria: Entropy, Pseudo-F, Payoff 

1st Derv. Grav. 

Heebner 

2nd Derv. Mag. 

Stone Corral 

Topeka 

Heebner 

Heebner 

Dir. 1st Derv. Mag. 

Toronto 

Gravity 

Lansing 

Heebner 

Stone Corral 

Topeka 

Heebner 

2nd Derv. Grav. 

Dir. 2nd Derv. Grav 

1st Derv. Mag. 

Base of the Kansas City 

Topeka 

Toronto 

Colors represent 

individual regions 



FNV – Key Variables 

Note the role of faulting/fracturing in most areas 

# Clus. = 6; Type: Points, lines, planes; Criteria: Entropy, Pseudo-F, Payoff 

Toronto 

Heebner 

2nd Derv. Grav. 

Gravity 

Elevation 

Toronto 

Gravity 

1st Derv. Grav. 

1st Derv. Mag. 

Lansing 

1st  Derv. Grav. 

Gravity 

Gravity 

1st Derv. Gravity 

Lansing 

Lansing 

Topeka 

Magnetic 

Colors represent 

individual regions 



HVA Decomposition – Key Variables 

Note the role of faulting/fracturing in most areas 

Number of ‘Clusters’ = 8; Criteria: Scree Plot, CD’s, Johnson Plots 

Gravity 

1st Derv. Grav. 

2nd Derv. Mag. 

Toronto 

Heebner 

1st Derv. Grav. 

Gravity 

1st Derv. Mag. 

1st Derv. Grav. 

Gravity 

1st Der. Grav. 

Elevation 

2nd Derv. Mag. 

Dir. 1st  Derv. Grav. 

2nd Derv. Mag. 

Toronto 

Gravity 

Heebner 

Stone Corral 

2nd Derv. Mag. 

Dir. 1st Derv. Mag. 

Topeka 

Elevation 

Dir. 2nd Derv. Grav 

Colors represent 

individual regions 



Statistical Results 

In terms of identifying both producing and non-producing 

wells, the data structural decomposition increased the 

model’s ability to identify producing and non-producing 

wells, thereby reducing future risk.  Hard cluster 

decomposition (red) did the best for this data set (not 

necessarily true with other data). 



Statistical Results (con’t) 

Hard clustering (red on left plot) increased the 

model’s ability to identify producing wells. Non-

producing well identification was enhanced by both 

Fuzzy N Varieties and HVA (red on right plot: a 

statistical tie). Identification of non-producing wells 

is a key component for risk analysis. 



Before and After 
Before proposed procedures: 

After proposed procedures: 
Note the increased 

resolution of the 

probability (risk) 

map after 

segmentation 

procedures  



Additional Information 
The HVA analysis produced mixing proportions for the 8 end 

members (EM) which were subsequently mapped giving more 

insight into the geologic history of this area. One example is given 

below for EM7. Other EMs were tied to block faulting, Laramide 

fault movements and platform depositional processes.   

Prop

. 

Pre-Cambrian Granite Knobs 



Conclusions 
• The size (geographic area) of a study region is 

important. 

• Every data set needs to be investigated for the 

presence of data structure. 

• The described methodology represents an exciting 

improvement for big data analysis. 

 

Additionally, important geologic information was 

gleaned from every step of this decomposition 

analysis that produced deep insight that is being used 

for locating economic deposits of oil and gas. This 

was not fully discussed in this report. 

Finally, additional data such as seismic, reservoir 

quality, petrophysical and similar can be easily added 

in this analysis. 



Thank You! 
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