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Abstract

Fault scarps cut a series of Holocene alluvial fan surfaces in Millard Canyon, within the San Gorgonio Pass (SGP). These fault scarps are likely
the result of coseismic slip along the San Andreas Fault system during potentially large magnitude (Mw7+) earthquakes. Here we provide new
ages for Holocene surfaces Qf2, Qf3, and Qf4. Charcoal fragments beneath Qf2 limits the surface to 1270 + 80 years before present (ybp) and
new 10Be exposure ages from the two older Holocene surfaces provide age constraints of 4800 + 1600 ybp for Qf3 and 6800 + 550 ybp for
Qf4. These new ages provide limits on the timing of slip through the San Gorgonio Pass. Airborne LIiDAR from the B4 dataset was used to
identify and measure preserved scarps that cut the terrace surfaces. The northernmost fault (F1) with an observed northward dip of 45 degrees
vertically offsets units Qf2 and Qf3 by 1.4 £ 0.7 m and 2.9 + 0.5 m respectively. The southern fault (F2), a 30 degree north dipping active
oblique strike-slip thrust fault, vertically offsets units Qfl and Qf4 by 1.5+ 0.6 m, and 12.7 + 1.4 m respectively. Geomorphic evidence
suggests a roughly 3:1 lateral to vertical slip relationship, and with this we mathematically resolve these vertical slip parameters onto their
respective fault plane geometries to evaluate the strike-slip component of motion. The strike-slip component, in conjunction with the age
constraints gives the following Holocene strike-slip rates: northern fault (F1): 1.6 + 1.1 mm/yr; southern fault (F2): 5.4 + 1.1 mm/yr.
Summation of these rates across the study area yields 7.0 + 2.2 mm/yr for the Holocene strike-slip rate through the San Gorgonio Pass. These
faults, suspected of carrying the majority of San Andreas motion through the SGP, are interpreted to release interseismic strain during large
magnitude earthquakes of Mw 7 or greater (Yule and Sieh, 2003).
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San Andreas Fault normalized slip rates from San Gorgonio Pass with 2o error (represented as color ramp). We resolve slip
vectors from Millard Canyon fault planes onto the N45W slip vector of the San Andreas Fault. We calculate the mean
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Formation of in-situ Cosmogenic Radionuclides (CRN) by spallation reactions. Primary cosmogenic
rays originate in outer space from many sources including supernovae. Nucleons (primarily pro-
tons) bombard atmospheric gases such as Nitrogen (N) and Oxygen(O), releasing secondary cosmic
rays as neutrons (n°), muons (u), positron(B+) and pions (rm). Neutrons and muons which play the
largest role in CRN production, advance towards the earth surface impacting quartz (SiO,) contain-
ing materials such as granite and siliciclastic alluvium (Lal, 1991). The impact causes spallation
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SGP stepover require similar yet alternate trigonometric resolution. We define ‘slip’

Depth Profile Concept. Incoming neutrons (blue) and muons (green) penetrate
through the soil column causing spallation reactions to occur at depth. Neutrons can
penetrate to depths of ~3m beneath surface; muons may penetrate down to 30m
beneath surface. Attenuation of neutron penetration causes exponential decrease in

(Wolffet al,. in

fission reactions to occur forming '°Be and *°Al isotopes from '°O and "Si respectively. Neutron : ) e ) : as the net movement on the fault plane (Sharp, 1975). Summed oblique slip vector - - - : - : : o
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as alluvium, and can effectively form CRNs up to depths of 30m at very low production rates. pendicular transects. Cross section E shows longitudinal terrace profile. See figures above in“Data” section. ema | I . ia N deSja rI 3 | S@CS un ed u
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