Well Log Quality Control: What You Don’t Know Can Hurt You*

Donald G. Hill1

Search and Discovery Article #41627 (2015)**
Posted June 22, 2015

*Adapted from oral presentation given at Pacific Section AAPG, SEG and SEPM Joint Technical Conference, Oxnard, California, May 3-5, 2015
**Datapages © 2015 Serial rights given by author. For all other rights contact author directly.

1University of Southern California, Los Angeles, CA, USA (dgh@hillpetro.com)

Abstract

Well Logs form the foundation upon which Oil and Gas reserves are based. Logging vendors are responsible for delivering data that has been acquired with instruments what were calibrated and run properly, providing documentation of this in both delivered hard and soft copy data. The client representative needs to verify that this has been done, before signing the vendor invoice, as the logging witness. Failure to do so can have severe repercussions, if “Stated Reserves” include data from miscalibrated and/or improperly run logs. Simple, straightforward, well site techniques are demonstrated which would allow the client representative to quickly determine if the vendor has properly done their job.
Well Log Quality Control

What you don’t know CAN hurt you!
Reserves

\[ STOOIP = \frac{7758Ah\phi(1 - S_w)}{B_{oi}} \]

• **STOOIP**: Stock Tank Original Oil In Place
• **A**: Area of Structural Closure, in Acres
• **h**: Average Reservoir Net Thickness, in ft
• **\( \phi \)**: Average Reservoir (fractional) Porosity
• **\( S_w \)**: Average Reservoir (fractional) Water Saturation
• **\( B_{oi} \)**: Initial Oil Formation Volume Factor
Why Is Log QC Important?

- Well Logs are the foundations upon which Reserves are estimated.
- Reserves are the Bank Accounts for Petroleum E&P organizations.
- E&P organizations that do not replace produced reserves are not long for this world.
- A Junior E&P firm developing a World Class Heavy Oil Resource had Billions of Bbl Oil Stated Reserves called into question because of Log Quality Problems.
Log QC Responsibilities

• Vendors are responsible for delivering data that was measured with instruments that were properly calibrated and working correctly.

• Clients and/or their representatives are responsible for seeing that this is done.

• Clients that accept the vendor products at face value, *probably get what they deserve.*
How Petrophysicists Spend Their Time

• Clients often criticize Petrophysicists for taking too long and costing too much.
• A recent LinkedIn Petrophysics discussion thread revealed that Petrophysicists spend, on average, between 50% - 75%, of their time doing data Quality Control:
  - If anything, modern logs have increased this load because there is so much more to review.
  - Digital files, without paper prints, only make the situation worse.
Foundations of Well Log Product Quality

Data Consistency & Concise Presentation

Tool Calibration & Reliability

Contractor Performance

>>> Client Preparation <<<
Wellsite is the Front Line for QC

- While the equipment is on site and the well bore is open, Back-up sondes can be run.
- Once the well has been cased, the best the vendor can do is offer discounts against future work.
Written Protocols

• Services Requested
• Who will “call Out” the vendor
• Logging sequences and tool stacks
• Calibrations expected
• Logging operations
• Displays
• Back-up and special equipment
• Specialist Engineer
• Hard and soft copy delivery
• Special conditions
Calibration Philosophy

Well Logging Tools are Calibrated by Adjusting their Response to Read some Predetermined value, in a Situation for which the Response is: Known

**Corollary-1**
The Only Time We know, for Certain, that Logging Tool is Working Properly, is During Calibration

**Corollary-2**
*Calibrate and Check Calibrations Often*
Linear Calibration Concept

- Uncalibrated response
- Calibrated response
- Plus cal point
- Slope change = calibrate gain
- Zero cal point
- Offset
- Measured value

API Test Pits – Primary Standard

- Fresh Water
- Concrete
- Corrugated Pipe
  - Carthage Marble (19% Porosity Index)
  - Indiana Limestone (19% Porosity Index)
  - Austin Limestone (26% Porosity Index)
- Concrete
- Gaging in Rathole Has ID 1/8" Larger Than Dia. of Holes in Limestone
Shop Calibrators – Secondary Standards
Field Calibrators – Tertiary Standards
Logging Job Calibration Protocol

• Shop Calibration:
  ➢ Should be as recent as possible (request to have it done before the unit leaves the shop).
  ➢ Do not accept tools with a shop calibration over 30 days old.

• Pre-Log Calibration Check:
  ➢ Check against drift from Shop Calibration.

• Logging Trip Calibration Checks:
  ➢ Repeats, Casing Signal, Evaporite Beds, etc.

• Post Log Calibration Check:
  ➢ Check against drift from Pre-Log Calibration Check.

• Calibrations *Must Be* Documented on Detailed Log Prints
Not all Logging Jobs Are Routine
Not all Shop Calibrators are Equal
Massive Anhydrite Density & Neutron Check
No Vender Wants to Deliver Bad Data
Acoustic Log Casing Check

Good Csg. Check

Bad Csg. Check
Do Your Porosity Logs Agree?
Do Your Logs Repeat?
Two Versions of Truth

Diagram: Repeat "stabilized" temperature profiles in a single temperature gradient hole.
**Gamma Ray Drift**

<table>
<thead>
<tr>
<th>SETE</th>
<th>TOOL CHECK</th>
<th>UNITS GAP</th>
<th>API</th>
</tr>
</thead>
<tbody>
<tr>
<td>GR</td>
<td>BEFORE 165</td>
<td>AFTER 226</td>
<td>+ 61 API</td>
</tr>
</tbody>
</table>

| MODB | TOOL CHECK | SMALL | BEFORE 6.0 | AFTER 6.2 | +0.2 IN | LARGE | BEFORE 12.0 | AFTER 12.2 | +0.2 IN |

Fluid Resistivity Bridge Check

Bad Calibration

Good Calibration
Temperature Tool Calibration

Bad Calibration

Good Calibration
Log QC Summary

- It’s NOT Rocket Science.
- You *Do* need to know what should happen, *and make certain that it does*.
- It sometimes takes a little creativity.
- It can make a **BIG** difference in the quality of your reserves estimates.
Thank you for your Attention