Depositional Processes and Impact on Reservoir Quality in Deepwater Paleogene Reservoirs, U.S. Gulf of Mexico*

Ann Marchand¹, Gillian Apps², and Weiguo Li¹

Search and Discovery Article #30402 (2015)**
Posted April 13, 2015

*Adapted from oral presentation given at AAPG Geoscience Technology Workshop, Sixth Annual Deepwater and Shelf Reservoir, Houston, Texas, January 27-28, 2015
**Datapages © 2015 Serial rights given by author. For all other rights contact author directly.

¹BP America, Houston, TX, USA (Ann.Marchand2@bp.com)
²BP, Sunbury on Thames, U.K.

Abstract

Reservoir deliverability is a critical risk for deep-water Paleogene reservoirs in the Gulf of Mexico. Permeability can vary two orders of magnitude (1’s to 100’s of mD) for a given porosity within a single lithofacies. The objective of this paper is to frame reservoir quality within the architectural elements of submarine gravity flows in a deep-water Paleogene field. Around 380 metres of core was described from a lower and upper reservoir, and core descriptions were integrated with routine core analysis, petrography, and laser grain size analysis data. We distinguished specific rock property suites, textural, and mineralogical characteristics for channel, lobe, and lobe margin depositional environments. Channel architectural elements have the best reservoir quality because they are generally fine-grained, and have a relatively low abundance of silt-sized particles (average 24 %) and ductile grains (average 17%) dispersed among framework grains. Lobe architectural elements in the lower reservoir display moderate reservoir quality, and are composed of fine- to very fine-grained sandstone, with an average of 34% silt and 18% ductile grains. Upper reservoir lobes contain more silt (average 40%) and ductile grains (average 29%), and lower reservoir quality. Reservoir quality is overall poor in the lobe margins where silt-sized particles and ductile grains are most abundant. The observed textural and mineralogical differences from the channel, lobe, to lobe margin environments are the result of grain segregations during transport within submarine gravity flows. As a best practice, reservoir quality should be examined in a depositional environment context.
References Cited

Understanding the Impact of Depositional Processes and Environments on Reservoir Quality in Deepwater Reservoirs:

A Case History from the US Gulf of Mexico Paleogene Play Trend

Ann Marchand\(^{(1)}\), Gillian Apps\(^{(2)}\) and Weiguo Li\(^{(1)}\)

\(^{(1)}\) BP America, Houston TX
\(^{(2)}\) BP, Sunbury on Thames, U.K.

AAPG Deepwater GTW, January 2015, Houston
This document is made available for information only and on the following conditions. The BP Group, along with its officers, directors and employees makes no representations or warranties, express or implied, as to the quality, accuracy and/or completeness of the information, views or opinions expressed in this document. Nothing in the document constitutes technical, commercial, legal or any other advice.

The information contained herein does not purport to be all-inclusive or necessarily contain all the information available on or material to a particular subject matter addressed in the document. The information, views and opinions contained in this document have not been independently verified by BP or any of its advisers and should not form the basis of any investment decision by a prospective purchaser or current holder of an interest in securities of the BP Group.

The information provided herein may contain certain forecasts, projections and forward-looking statements - that is, statements related to future, not past events - with respect to the financial conditions, results of operations and businesses of the BP Group and certain of the plans and objectives of BP with respect to these items. By their nature, forward-looking statements involve risk and uncertainty because they relate to events and depend on circumstances that will or may occur in the future. Actual results may differ from those expressed in such statements, depending on a variety of factors. The BP Group assumes no obligations to update the forward-looking statements contained herein to reflect actual results, changes in assumptions or changes in factors affecting these statements.

The BP Group, along with its officers, directors and employees, shall have no liability whatsoever regarding the use of or reliance upon the information, views or opinions expressed in this document to any recipient of this presentation, along with its affiliated companies and/or beneficial owners.
• Active exploration and development worldwide
• Major drilling & infrastructure costs
• Geological challenges:
 • Contrasting reservoir architectural styles & complex spatial distributions
 • Variety of flow processes and sediment mixtures
 • Variable rock types and stacking patterns
 • Highly variable reservoir quality resulting in reservoir characterization uncertainties
 • Predictability of high and low permeability reservoir units is not straightforward
 • Difficult to forecast appropriate production profiles
Presentation Objectives

- Explore the relationship between reservoir quality and large-scale depositional (architectural) elements in a deepwater turbidite reservoir
- Understand how reservoir quality varies laterally across turbidite deposits (connectivity)
- Understand how reservoir quality varies vertically (temporal)
- Formulate rules for reservoir quality prediction
Reservoir Quality Variability in Turbidite Reservoirs of the Paleogene Play Trend

How are textures fractionated in submarine fans?
How do lithotypes stack in larger (predictable) scale architectural elements?

SAND HETEROGENEITY WITHIN 15’ OF RESERVOIR:
- Decreasing Permeability
 - 418 mD
 - 13 mD
 - 0.8 mD
From Lithotypes to Architectural Elements

- **Lithotypes**
 1. Laminated mudrock
 2. Ripple cross-laminated sandstone
 3. Massive sandstone
 4. Laminated sandstone
 5. Mudclast-rich mudstone

- **Vertical Stacking Patterns**

- **Architectural Elements**
 1. Major distributary channels (trunk distributary channels)
 2. Minor distributary channels & lobe sandsheets (channelized lobe)
 3. Lobe sandsheet margin & fringe

- **Reservoir Model**

 1. Trunk Distributary Channel
 2. Channelized Lobe
 3. Lobe Margin & Fringe
Reservoir Architectural Element Characterization: Analog Outcrop Data

Trunk Channel complex: Up to 1 mi wide 50-200’ channel fills

Distal lobe margin:
Thinner beds
Increasing mudrock divides
Poorer connectivity

Channelized lobes:
Sand on sand amalgamation with good connectivity
Lobes compensationally stack to form lobe complex (up to 20 mi wide and 100’ thick)
Reservoir Architectural Element Characterization: Rock Type Distribution

Based on work by John Mbibi (BP)
Reservoir Architectural Element Rock Properties

• Trunk distributary channels have some of the highest permeabilities (K 59 mD)

• Channelized lobes (axis, proximal, lobe sheet sands & distributary channels) also yield moderate permeabilities (K 17 mD)

• Lobe margin and fringe settings have poorer permeability for largely the same porosity range as channelized lobe samples (K 3 mD)
Reservoir Architectural Element Textural Characterization: Grain Size (from thin section)

- **196 microns & < 10% silt particles**
- **193 microns & 20% silt particles**
- **72 microns & 55% silt particles**
Reservoir Architectural Element Textural Characterization: Silt & Clay Content (LPSA)

Trunk Distributary Channels

Channelized Lobes

Lobe Margin & Fringes
Why Does Textural Segregation Occur in Submarine Fans?

- Textural segregation well documented in analogue studies (e.g. Brushy Canyon TX)
- Presence of flow regions confirmed by experimental flume work
- Textural segregation influences permeability in our deepwater reservoirs

Reservoir Compositional Characterization

Miocene Reservoirs

Paleogene Reservoirs
Reservoir Compositional Characterization: Detrital Framework Grains

Rigid minerals:
- Quartz
- Plutonic fragments
- Chert
- Sandstone fragments
- K-feldspar
- Plagioclase
- Rigid metamorphics

Ductile minerals:
- Volcanic fragments
- Mudclasts
- Siltstone fragments
- Ductile metamorphics
- Organic material
- Mica

Miocene Reservoirs:
- 82%

Paleogene Reservoirs:
- 47%
Reservoir Compositional Characterization

Miocene Reservoirs

Paleogene Reservoirs
Reservoir Architectural Element Compositional Characterization

SILT HISTOGRAMS

Trunk Distributary Channels

DUCTILE GRAIN HISTOGRAMS

Channelized Lobes

Lobe Margin & Fringes
Mineralogical Segregation During Longitudinal Evolution and Flow Transformation of Turbidity Currents

Published Examples:

- Gardner: feldspar increase from slope to basin floor
- Stammer (AAPG & Geocosm RQC 2014): Flows segregate minerals based on density and shape
Spatial and Temporal Reservoir Quality Variation in Submarine Fans

Hadler-Jacobsen et al., 2005
Spatial Variation in Reservoir Quality in Submarine Fans

Reservoir Characteristics
- Amalgamated, mostly structureless sandstones
- N:G varies depending on facies and channel architecture
- Good connectivity if vertically and laterally clustered

Stacking Patterns
- Mostly non-amalgamated, thin- to medium-bedded sandstones
- Poor connectivity because of interbedded mudstones

Reservoir Quality

From: Weiguo Li, Rob McDonald, Laura Rumelhart (BP); Based on learnings from Lobes & Slopes Consortia with University of Leeds (D. Hodgson)
Temporal Variation in Reservoir Quality in Submarine Fans

Grain size variations reflect changing depositional energy through time:

Increasing flow energy

Lobes
Minor channels
Trunk channels

Rock properties change through time for any given architectural element:

Based on learnings from GAIA with Montana State University (M. Gardner)
Temporal Variation in Reservoir Quality in Submarine Fans

Grain size variations reflect changing depositional energy through time:

- **T1 Channel Sand 199 μm**
- **T2 Channel Sand 110 μm**

Rock properties change through time for any given architectural element:

Based on learnings from GAIA with Montana State University (M. Gardner)
Data gathering in deepwater fields is difficult and expensive so often decisions need to be made with small amounts of data.

Uncertainties (burial & EOD) must be identified and quantified for different reservoir scenarios so informed decisions can be made.

Depending on what analogue sand is used in the model, a range of outcomes is possible.

Where possible, prospect needs to be placed in regional & stratigraphic context in order to reduce uncertainty around reservoir style & quality.
Conclusions

• Flow and depositional processes exert a clear control on reservoir quality in deepwater systems
• There is a relationship between reservoir quality and the architectural elements of deepwater deposits
• Deepwater systems shift and compensate at all scales, so there are systematic (predictable) spatial changes in reservoir quality
• Architectural elements evolve systematically through time in response to larger-scale processes, so there are systematic (predictable) changes in reservoir quality through time