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Abstract

The complex burial and diagenetic histories of the Jurassic Fulmar and Triassic Skagerrak sandstones in the UK Central North Sea present
significant challenges with regard to reservoir quality and rock property prediction. Commercial reservoir quality is retained despite deep burial
and associated high temperatures and pressures. Shallow-marine Fulmar sands are normally compacted (mean IGV = 26+3%), yet have
porosities of 21 — 33%. Porosity was preserved through inhibition of quartz cementation by clay and microquartz coatings and enhanced by
dissolution of framework grains (~ 5%). Skagerrak fluvial sands are more compacted (mean IGV = 234+2%), exhibit minor feldspar dissolution
(<1%), and have porosities of 16 — 27%. Quartz cement averages only 2+1.5% due to robust chlorite coats that cover 80% (+13%) of quartz
surfaces. We modeled reservoir quality evolution using the forward diagenetic model Touchstone, which simulates porosity loss due to
compaction and quartz cementation. Quantitative petrographic analyses and burial history data were used to calibrate Touchstone model
parameters. The results were applied to deeper prospects for pre-drill prediction of porosity and permeability. In parallel, petrophysical data
were used to characterize the elastic properties of the sandstones to provide a basis for quantitative seismic forward modeling. Experimental
data and core-calibrated petrophysical results, reflecting variable in situ fluids and saturations, were used to build an elastic properties model.
The model is robust and was used to generate fluid-filled sandstone properties, incorporating Touchstone results, for prospect-specific seismic
attribute modeling. Well results from exploration wells are in good agreement with pre-drill Touchstone and elastic properties model
predictions.
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From Reservoir Quality to Rock Physics

Iterative, multi-disciplinary data interrogation & integration

Sedimentary Seismic Elastic Properties
Petrology Petrophysics (Rock Physics)
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ETAP Area CNS Triassic - Skagerrak Sandstones

»Fluvial — lacustrine deposits,
semi-arid environment

»RQ facies dependent

»Diagenesis
- compaction
- early carbonate cement
- authigenic K-feldspar
- chlorite grain coats
- quartz cementation

»$=16-26%; Ka=2-450md
Depth =3.5-4.8 km
T=137-165°C
VES =34 - 48 MPa




Skagerrak Reservoir —J Block UK Quad 30

Sandstones with 30 — 35% Porosity
Range ~ 15 - 35%; P50 ~ 20%

Nguyen et al., (2013) AAPG Bulletin
Grant et al., (2014) AAPG Bulletin

Propose that extraordinary intergranular porosity held open
by: early overpressure & occult halite cement.

What do these sandstones look like in thin section
as opposed to only a point on a graph?

“Critical porosity is the porosity above which
the rock can exist only as a suspension. In
sandstones the critical porosity is 36% - 40%,
that is the porosity of a random close pack of
well sorted rounded quartz grains.”

Dvorkin & Nur, 2001




What does a sandstone |
with 30 - 35% porosity
look like in thin section?

$=1GV=31%
Secondary ¢ = 0%
Micro ¢ = 0%

¢stressed-brine =31.4%
Kitressed-brine = 39 mD

IGV =26.8%
Intergranular ¢ = 17%
Secondary ¢ = 8%
Micro ¢ = ~6.4%




Grain Coat Coverage (%)

Skagerrak Sandstones
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Presenter’s notes: Eastern Trough Area Project.
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Intergranular Porosity (%) Calculated
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Acoustic Rock Properties Modeling

Data and Information Needed for Integration of
Touchstone Models and Acoustic Rock Properties Models

» Detailed petrographic data and burial histories for
calibration of Touchstone models.

» High quality stressed porosity and permeability
measurements for calibration with thin-section data.

» Vp, Vs, stress measurements for representative
samples

» Fluid acoustic properties
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Skagerrak Formation Sandstones
Heron & Egret Fields - in situ Reservoir Brine
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Skagerrak Formation Sandstones
Heron & Egret Fields - in situ Reservoir Brine
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Blind Test = Franklin Deep Well = Skagerrak Penetration

Skagerrak Formation Sandstones
Heron & Egret Fields - in situ Reservoir Brine
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Blind Test = Franklin Deep Well = Skagerrak Penetration
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From Reservoir Quality to Rock Physics

Calibrated Touchstone Model
- porosity prediction

* Acoustic Rock Properties Model
- Vp, Vs prediction

Fluid Rock Properties Model
- fluid effects on Vp,Vs

*Seismic Attribute Modeling
- rock & fluid scenarios compared
with seismic data

Modeling results indicate that seismic
amplitudes would not yield unambiguous
indications of brine vs. hydrocarbon fluids

Presenter’s notes: In geophysics and reflection seismology, amplitude versus offset (AVO) or amplitude variation with offset is the general term for referring to the dependency of seismic attribute, amplitude,
with the distance between the source and receiver (the offset). AVO analysis is a technique that geophysicists can execute on seismic data to determine a rock’s fluid content, porosity, density or seismic velocity,
shear wave information, fluid indicators (hydrocarbon indications).

The phenomenon is based on the relationship between the reflection coefficient and the angle of incidence and has been understood since the early 20th century when Karl Zoeppritz wrote the Zoeppritz equations.
Due to its physical origin, AVO can also be known as amplitude versus angle (AVA), but AVO is the more commonly used term because the offset is what a geophysicist can vary in order to change the angle of
incidence.

Interpretation: An AVO anomaly is most commonly expressed as increasing (rising) AVO in a sedimentary section, often where the hydrocarbon reservoir is “softer" (lower acoustic impedance) than the
surrounding shales. Typically amplitude decreases (falls) with offset due to geometrical spreading, attenuation and other factors. An AVO anomaly can also include examples where amplitude with offset falls at a
lower rate than the surrounding reflective events.

AVO is not fail-safe: An important caveat is that the existence of abnormally rising or falling amplitudes can sometimes be caused by other factors, such as alternative lithologies and residual hydrocarbons in a
breached gas column. Not all oil and gas fields are associated with an obvious AVO anomaly (e.g., most of the oil found in the Gulf of Mexico in the last decade), and AVO analysis is by no means a panacea for
gas and oil exploration.
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Summary & Conclusions

e Rigorous, quantitative petrographic analyses & forward modeling, seismic
petrophysics and rock physics models provide a foundation for quantitative
seismic forward modeling for Triassic Skagerrak reservoirs in HPHT settings
of the Central North Sea.

¢ The multi-disciplinary approach applied in this study was successfully used to
forecast reservoir quality for a deep, high-risk prospect.

e When properly applied, the approach has
potential for broad application in exploration
targeting sandstone reservoirs.




