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Abstract

As a result of a very complete data set including Pyrolysis S1 data over an interval of 8035ft to 8497ft at 5ft intervals on a
Wolfcamp well in the Midland Basin of Texas enabled the author an opportunity to compare different methods of calculating Oil
in Place. The first OOIPstb calculation was done using only resistivity (AIT90), bulk density (pb), and neutron porosity (¢nls)
data with TOC determined by the Schmoker Equation. The volume of clay (Vcl), volume of quartz (\Vqtz), and total porosity
(¢total) were determined by the Simultaneous Equation Method developed by Rick Lewis with Schlumberger. Effective porosity
(¢e) was calculated as ¢e = ¢total — (Vcl*oclay). Using a permeability cut-off of ka > 100nD {ka = [(0.0108*¢oil) —
0.000256]*10°} the OOIPsth/160 acres over for the Wolfcamp "A" is 3.4mmbo and 7.5mmbo [no cutoff]. The Wolfcamp "B" is
2.7mmbo [ka > 100nD] and 10.8mmbo [no cutoff].

The next OOIPstb calculation was done using AIT90, pb, and ¢nls data along with GEOCHEM [ECS] data. TOC was determined
by the Schmoker Equation. The ¢total was determined with a variable matrix analysis using Vqtz, VVcalcite, Vkerogen, Vcl, and
Vpyrite. Effective porosity (¢e) was calculated as e = ¢total — (Vcl*dclay). Using a permeability cut-off of ka > 100nD {ka =
[(0.0108*¢oil) — 0.000256]*10°%} the OOIPstb/160 acres over for the Wolfcamp "A" is 4.6mmbo and 8.4mmbo [no cutoff]. The
Wolfcamp "B" is 3.2mmbo [ka > 100nD] and 10.7mmbo [no cutoff].


http://www.searchanddiscovery.com/documents/2014/41406asquith/ndx_asquith.pdf
mailto:george.asquith@ttu.edu

The third method to determine Oil in Place was based on the method outlined by Downey el al. (2011) using Pyrolysis S1 data.
The equation used is listed below:

Oil in Place/160acres = £[1241.34*pb*S1*(1/p0il)*0.5’]

Using the above OOIP equation with S1 values calculated from the TOClab Pyrolysis S1 Transform illustrated above, the
calculated Oil in Place/160acres are Wolfcamp "A" 5.6mmbo [no cutoff] and 2.9mmbo [¢pe > 4% cutoff], and for the Wolfcamp
"B" 9.6mmbo [no cutoff] and 3.5mmbo [¢e>4% cutoff].

The general agreement of OOIPstb determined from Triple Combo/GEOCHEM [ECS] and Triple Combo only with Oil in Place
from Pyrolysis S1 data suggest that the use of a permeability cut-off of ka > 100nD and ¢e > 4% may have validity in establishing
a net pay cut-offs for the Wolfcamp. In addition, the OOIPstb values calculated with only the Triple Combo data [AIT90, pb, and
¢nls] gave reasonable values [6.1mmbo] versus [7.8mmbo] using GEOCHEM [ECS] data is important, because a great many
wells have only Triple Combo data.

The calculation of OOIP using Pyrolysis S1 data has the advantage in that values for formation water resistivity (Rw), porosity
(9), tortuosity factor (a), cementation exponent (m), and saturation exponent (n) are not required.
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KEY FACTORS for ECONOMIC SHALE

[from: Rick Lewis (2013) w/ SCHLUMBERGER]

RESERVOIR QUALITY
 Hydrocarbons in Place _
« Matrix Permeability

* Pore Pressure

COMPLETION QUALITY

 Hydraulic Fracture Surface Area
 Hydraulic Fracture Conductivity
 Hydraulic Fracture Containment




PERMIAN WOLFCAMP: Midland Basin Texas I
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PERMIAN WOLFCAMP: Midland Basin Texas
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TOClab & TOCschmoker

TOClab(wt%):
0.43t0 8.7/ avg.=3.3wt% N =94

TOCschmoker(wt%):
1.46t0 6.8 avg.=3.8wt% N =94

Vke = (TOC=*Kvr*pb)/pkerogen



ORGANOPOROSITY [®om] & MINERAL MATRIX POROSITY [®@mm]
[Courtesy of Rick Lewis w/ SCHLUMBERGER]




POROSITIES
in
ORGANIC-RICH SHALES

®dtotal and Vcl from Simultaneous Equations or ECS and
Variable Matrix Analysis

®e = Ptotal - CBW CBW = Vcl*dclay

de =Pom + dmm  dclay = 0.10 [lllite]

dom = VkexOM OM = Intra-Kerogen Porosity
OM =0.30 [OM = 0.22 to 0.45]

Ke =1.1g/cc to 1.5g/cc during HC generation

dmm = e — dom



OOIPsthb
DUAL POROSITY PROCEDURE

OOIPstbh ORGANOPOROSITY [®@om]:
®oil = dom*(1-Sw) Sw =0.0
OOIPstb = Z[(7758 * ®oil * h * A)/BOI]
h =0.5ft. A=160ac. BOI=1.4

OOIPstb MINERAL MATRIX POROSITY [@mm]:
®oil = dmm=*(1-Sw)

Sw = (Ro/Rt)*0.5 Ro =1/®"2 & = ®dtotal - Pom
OOIPstb = Z[(7758 * ®oil * h * A)/BOI]

h =0.5ft. A=160ac. BOI=1.4



OOIPstb
TRIPLE COMBO

DATA ONLY
AIT90, pbh, and ONIs




MINERAL VOLUMES and TOTAL POROSITY

« Vcl +Vvqtz + Vke + Dtotal =1.0 Vke = (TOC*Kvr#pb)/pkerogen
- Vcl*pcl + Vatzxpqtz + Vkexpke + Dtotal*pf = pb
«  Vcl*@ncl + Vatz+@nqtz + Vkex®nke + Ototal+*Pnf = Pn

TOCwt% = (1 56.956/pb) - 58.271 thmoker Equation

Vcl = volume of clay

pcl = density of clay ®ncl = neutron porosity of clay

Vqtz = volume of quartz

pgtz = density of quartz ®nqtz = neutron porosity of quartz
Vke = volume of kerogen

pke = density of kerogen ®nke = neutron porosity of kerogen

ODtotal = total porosity
pf = Swxpwater + (1-Sw)*poil
Onf = SwxOnwater + (1-Sw)*Pnoil Modified After Lewis (2009)




I Lithology [simultaneous eq.] & Fluid Saturations: Permian Wolfcamp Shale: Texas I
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VARIABLE MATRIX [GEOCHEM DATA]

1 pma = (Vcl*pcl)+(Vcal*2.71)+(Vqtz*2.65)+(Vpyr*5)+(Vke*pke)
pke =1.5g/cc Vke = (TOC*Kvr*pb)/pkerogen
1 pcl

Kaolinite = 2.61g/cc

Chorite = 2.92g/cc

lllite = 2.71g/cc

lllite/Smectite = 2.45¢g/cc
Smectite = 2.26g/cc

[]

1 ®total = (pma — pb)/(pma — pf)
1 pf = (Sw=*1.1) + [(1-Sw)*phc] pgas = 0.1g/cc poil = 0.85g/cc



Lithology [ECS Log] & Fluid Saturations: Permian Wolfcamp Shale: Texas I
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OIL in PLACE
PYROLYSIS S$1 DATA



Rock Evaluation Pyrolysis
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= PN - of - | S8 I n
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TOTAL ORGANIC CARBON [TOC]

SUBSURFACE

Kerogen Bitumen Light Qil

< S2 >< S1 >

CORES or CUTTINGS [NON-EXTRACTED]

Residual
Light Oil

= <>

Kerogen Bitumen

CORES or CUTTINGS [EXTRACTED]

IN THE LAB

Overla Dean Starks
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Pyrolysis S1

14

12

10

TOClab versus Pyrolysis S1 Permian Wolfcamp Midland Basin I

S1=1.3888*xTOC
R"2 =0.7912
N =96
1 2 3 4 3) 7 8

TOClab

10



OOIP from Pyrolysis [S1] Data

* OOIP/640 ac./ft = 4965.36*pb*S1*(1/poil)
[Downey et al., 2011]

* OOIP/160ac. = X£[1241.34*pb*S1*(1/poil)*0.5’]
TOC = (156.956/pb) - 58.271 [Schmoker Equation]

pb = bulk density from well log

S1 =1.3888+*TOClog
poil = oil density [default value: 0.85g/cc]

0.5ft. = log data interval



Lithology [ECS Log] & Fluid Saturations: Permian Wolfcamp Shale: Texas I
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OOIPstb
CORRECTED
for

NON-MOVEABLE

BITUMEN




NON-MOVEABLE BITUMEN and the
IMPORTANCE of THERMAL MATURITY

]
|

—— Very High PERCENT BITUMEN very Low |
[
Ro =0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 Ro =2.0
, Wet Gas
Immature Oil Wet Gas+Oil + Dry Gas
Bitumen Condensate Bitumen

2.73% - 8.32% 0.05% - 0.24%

% Bitumen from: Lewis (2013)

NOTE: As maturity increases the non-producible
bitumen is converted to producible oil and gas.
The problem is that the non-producible bitumen
IS calculated as potentially producible oil in a
standard log analysis [OOIPstb].




Wolfcamp Midland Basin Well: Ro(avg.) = 0.84 N = 96
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SHALE POROSITY [Low Maturity]
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CORRECTING for NON-PRODUCIBLE
BITUMEN

« NMR/CMR Method [Rylander et al., 2013]

NO NMR/CMR LOG

* Ro [vitrinite reflection] versus Non-Producible
Bitumen [®bitumen] Method [Asquith, 2014]

OOIPstb = Z[7758*(®oil-®bitumen)*0.5’+*160ac.]/BOI
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POROSITY

T2 DISTRIBUTIONS from CMR/NMR CORE
and
CMR/NMR LOG [Downhole]

[redrawn from examples in Rylander et al., 2013]
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Lithology [ECS Log] & Fluid Saturations: Permian Wolfcamp Shale: Texas
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Summary: Volumetric OOIPstb[mmbo], Pyrolysis S1 OOIP[mmbo],
& Bitumen Corrected Permian Wolfcamp “A” and “B” Zones:

Midland Basin Texas [160ac.]

| _ _ Bitumen
Triple-Combo | Triple Combo/ECS [ Pyrolysis S1

WOLFCAMP “A”

WOLFCAMP “B”

OOIPstb = Z[7758*(®oil-®bitumen)*0.5’*160ac.]/BOI




CONCLUSIONS

OOIPstb calculated using GEOCHEM
data compared well with OOIPstb
calculated using only Triple Combo
data in both Wolfcamp “A” and
Wolfcamp “B”.

However, in the Wolfcamp “A” and
“B” OOIP from Pyrolysis S1 data
and bitumen corrected are lower.



CONCLUSIONS

OOIP calculated from Pyrolysis S1
Data has the following advantages:

1.) NO Rw Needed
2.) NO Porosity Needed [no a, m, nj
3.) NO BITUMEN in the Calculation



CONCLUSIONS

OOIP determined from Pyrolysis S1
data and/or OOIPstb corrected for

non-moveable bitumen [Rylander,
2013; Asquith, 2014] represent free-
hydrocarbon volumes.

[SEE: LAST SLIDE]
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