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Abstract

The Cambrian-Ordovician Conasauga and Knox Groups constitute a regional succession of carbonates punctuated by brief periods of clastic
deposition. Diagenesis and a history of multiple orogenic events resulted in the development of a complex fracture system. Understanding the
orientation and distribution of the natural fracture sets within the Conasauga and Knox Groups is of significance in seeking potential CO,
storage zones and building reservoir models with fracture networks.

Preliminary fracture studies were carried out to determine natural fracture orientation and distribution within the Conasauga and Knox Groups
on the western flank of northern Appalachian Basin. Over 700 observations of fractures were interpreted on newly acquired resistivity and
acoustic image logs collected at multiple well locations ranging in depth from 730 to 4150 meters. We evaluated structural parameters of the
fractures using statistical analysis. Additionally, we evaluated the likelihood of observed fractures to slip under current stress conditions using
3D Mohr diagram for critically stressed fracture analysis.

Analysis and interpretation of fracture orientation clusters shows the regional fracture systems are highly complex with possibly systematic and
non-systematic fractures within the evaluated lithologic units. Fracture density is observed to increase up-dip within the studied area. Overall, a
high percentage of fractures with varying dip direction were observed to strike sub-parallel to the contemporary maximum horizontal stress
direction (SHmax) determined from wellbore failure, while a lower percentage strikes perpendicular to the SHmax direction. Critically stressed
fracture analysis shows the natural fractures are not critically stressed in the current state.

This project was supported by U.S. Department of Energy's National Energy Technology Laboratory (Award DE-FE0023330) and Ohio
Development Services Agency (Grant OER-CDO/D-14-16).
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The Cambrian-Ordovician Conasauga and Knox Groups constitute a regional succession of A APPALACHIAN BASIN Ten resistivity and acoustic log pmp— pr— v — pr— Analysis on fracture orientation is important in understanding and modeling possible natural
carbonates punctuated by brief periods of clastic deposition. Diagenesis and a history of multiple . - mmmw 0 Lgmmmmn ,, images were collected within the S - ! S 1 - fracture network within examined formations in the region. Results of structural parameters
orogenic events resulted in the development of a complex fracture system. Understanding the . . T s Cambrian —Ordovician interval " ] & 415 derived from interpretation of natural fractures on acoustic and resistivity image logs was
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orientation and distribution of the natural fracture sets within the Conasauga and Knox Groups is of
significance in seeking potential CO, storage zones and building reservoir models with fracture

from a vertical well. The logs were
interpreted to identify natural

statistically analyzed. Results of analysis is shown in Figures 8 and 9. Rose diagrams were also
produced to understand any dominant trend in observed natural fractures. Rose diagrams were
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networks. Preliminary fracture studies were carried out to determine natural fracture orientation fractures and well-bore failures. L overlaid on maps shown in Figures 13 to 16.
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DETERMINATION OF AZIMUTH FOR MAXIMUM HORIZONTAL STRESS RELATING OBSERVED NATURAL FRACTURES TO PRESENT DAY STRESS FIELD STRESS MAGNITUDES & REGIME IN THE LITHOSPHERIC CRUST
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CONCLUSIONS
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