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Abstract

Early in the development of a shale gas resource, optimal well spacing remains unknown as wells are sparsely drilled to hold leases by
production. Developing the acreage requires operators to select locations, specify drilling plans, and design completions for multi-stage
horizontal wells to maximize the operating metrics as defined by the company.

This presentation builds on our earlier work which presented sensitivity analysis for optimal well spacing with respect to permeability,
fracture spacing and half-length under the assumption of uniform and symmetric completion configurations. The well spacing sensitivity to
heterogeneity in completion configurations (i.e., non-uniform fracture half-length and asymmetric fracture spacing) are presented in this paper
using deterministic modeling and stochastic modeling approaches.

Deterministic modeling results show a strong bias towards the longest repeated fracture half-length in determining the optimal well
spacing. Higher reservoir permeability abates the impact of fracture heterogeneity. Fracture modeling, constrained by production logs,
temperature logs, and/or microseismic, can be used to aid in the identification of the longest repeated half-length.

This work demonstrates the challenges associated with stochastic modeling of well performance. Examples from synthetic and field results
from the Woodford Shale are presented to illustrate uncertainty in reservoir and completion parameter determination. The spacing
optimization workflow used captures this uncertain range to effectively determine the impact on recovery factor and Net Present Value (NPV).
The importance of the quantity of production history needed to determine optimal well spacing is also presented. Results reveal that with
increasing heterogeneity longer production history is required for reliable determination of optimal well spacing. Finally, a completion
optimization study is shown how changing the completion design impacts well performance and influences future well spacing decisions.

These conclusions, via the application of deterministic and stochastic modeling on production from field cases and synthetic wells, will aid
operators in answering the multi-billion dollar question: how many wells should be placed in a given area? The workflow described in this



presentation not only can answer this question but also help us to understand how to maximize economic return and the ultimate gas
recovery.
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Slide 3

Methodologies

e Deterministic modeling
— One set of input parameters

— One cumulative recovery
Kennon et al. (2009), Jayakumar et al. (2011)

e Stochastic modeling
— Range of input parameters

— Range of cumulative recovery
» Miller et al. (2010), Boulis et al. (2013)
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Stochastic Modeling
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Flow Regimes
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Woodford Wells Productivity Index Behavior (J,)
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Woodford Wells — Completion Resistance
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JIt vs. Proppant Mass

45 ~
2y 40
75)
¥ ©

2 35 ®
‘D 30 ..
= 25 .= oo
8 20 © €] 4 ® ® Color by
= 15 ® e 9° Q ® Area-Location
~ “. ® ® B Central
= 10 ) ® North
- W South

o

0.5 1 1.5 2 25
Proppant Mass (MMIbm)




JIt vs. Liquid Pumped

JIt (Mscf/psi/d*.5)
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Observations Based on Woodford Wells

e Stochastic Modeling:

— Gives a framework to identify productivity and completion
resistance trends

— Provides for a consistent comparison within a play
e All wells appear to be in linear transient flow
e Linear transient productivity index:

— Better productivity comparator than IP or 3/6/9 month cum
— Can be used to identify areas where to optimize completion design




Homogeneous Well Spacing
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Presenter’s notes: Our previous work demonstrated no drainage extend from the extent of the SRV which depends on the fracture half length. The non-
stimulated region does not provide much contribution when considering optimal well spacing. This work assumed that the fracture area in the SRV had
uniform fracture half length and uniform fracture spacing. So for large fracture half lengths you will need less wells to get optimal recovery vs. the two cases
on the right which show lower fracture half length.

rford, AN rights reserved




Optimum Well Spacing
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Presenter’s notes: This previous work was for an idealistic case. Information from PLT show that only a few stages and clusters can be contributing to the
flow, which results in non-uniform fracture spacing. Microseismic homogeneity does not exist, so we must account for heterogeneity so our study focused
on how heterogeneity affected our answer on optimum well spacing.




Optimum Well Spacing

e How do we define “optimal”

e What is the impact of heterogeneity in
— Fracture area/half-length
— Fracture spacing
— Drainage profile

e How does length of production history impact our
decision

v




Deterministic Modeling — Flow Regimes

Internal Linear Transient Flow Internal Depletion Flow

Il

‘ © 2014 Weatherford, All rights reserved

Presenter’s notes: We use the term “fractures” to refer to hydraulically-induced and propped fractures. Fracture spacing is defined as the distance between
two adjacent planar hydraulically-induced fractures along the wellbore. Permeability is simply the matrix or rock permeability connected to the propped
hydraulic fractures. The stimulated reservoir volume (SRV) is the total volume that encompasses all fractures (i.e., fracture tip-to-fracture tip). The external
reservoir volume (XRV), is the volume outside the SRV that is still assigned to a given well based on its current or future no-flow boundaries. The internal
flow (flow within the SRV) and external flow (from XRV, area outside the SRV, toward the SRV) as defined in this paper. The image on the left shows
internal linear transient flow that occurs within the SRV at early times, and the image on the right shows a well in predominantly external linear transient
flow (Miller et al., 2010) from the XRV to the SRV which happens later in the life of well once the SRV has been depleted.




Synthetic Cases

Base Case Non-uniform Fracture Spacing
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Base Case — Total Cumulative

Base Case Properties:
12 Stages, 48 Clusters
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Presenter’s notes: The SRV lines up at 5 wells. It is interesting to note that the NPV has only a slight increase past 10 years of production. Again the
optimal point defined as the maximum NPV occurs at 5 wells per section. No scales are shown on the NPV curves, since the character of the plot does not
change despite what economic assumptions were used.




Optimal Well Spacing Definition

e Number of wells after which next additional well
increased the slope less than 50%

Incremental Cumulative for nt"* well
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Base Case — Incremental Cumulative
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Impact of Fracture Half-Length & Fracture
Spacing Heterogeneity

A Base Case (500 ft Uniform Half Length)
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Reservoir Depletion
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NPV

Impact of Fracture Half-Length & Fracture

Spacing Heterogeneity

NPV
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Impact of Additional Heterogeneity

Drainage Profile
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Effect of Production History
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Effect of Completion Design

Woodford Case Study

Red Section (Completion Design A)
Inner wells have 20% less productivity
¢ Inner wells drive economics

e Outer wells suggest larger spacing

Completion % More % Better % Higher
Design Proppant  Productivity Rategy,

B 80 40 55
C 100 60 80
D 125 90 135

Blue Section

Green Section

Red Section

Black Section




Asset Monitoring & Reserves Progression
Woodford Case Study

e Eight wells initially planned
per section as per
completion design A

Operator 1 s Our Glient

e Evolution of completion
design (B, C & D) impacts
well performance and
influences future well
spacing decisions

Well Development Cost

e Increased completion
cost offset by higher
productivity wells

e Planning cycle: Multiple
months became 3 weeks Estimated Ultimate Recovery
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Asset Monitoring & Reserves Progression

Woodford Case Study

e Eight wells initially planned
per section as per
completion design A

e Evolution of completion
design (B, C & D) impacts
well performance and
influences future well
spacing decisions

Well Development Cost

e Increased completion
cost offset by higher
productivity wells

e Planning cycle: Multiple
months became 3 weeks
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Conclusions

e Well spacing decision varies by the choice of
optimization metric

e Longest repeated half-length has a strong
influence on optimal well spacing

— High permeability will reduce the impact of
heterogeneity

e Non-uniform fracture spacing does not impact
the optimal number of wells per section;
however, it does reduce cumulative and NPV

v




Conclusions

e Non-homogeneous fracture half-lengths also
reduce the recovery factor and NPV

e Well spacing decisions based on early production
tend to overestimate the number of wells required
to optimally produce the section




Future Investigation

e Extend into Oil Reservoirs
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Future Investigation

e Extend into Oil Reservoirs
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