Abstract

What is the potential of producing oil from the Woodford Shale, especially near the start of the oil window? How accurately can the oil window be defined? The emphasis of this presentation is to answer these questions.

Shale gas and oil resource plays require a thermally mature hydrocarbon source rock and a brittle (e.g., Barnett style) or conventional-reservoir (e.g., Bakken style) lithology. Lacking both (1) a hydrocarbon source rock with a significant amount of oil generative organic matter at the optimum thermal maturity to generate, preserve, and expel hydrocarbons, and (2) a lithology that is susceptible to producing natural and induced fractures will negate a viable resource play.

The primary analysis used to estimate thermal maturity is vitrinite reflectance (% Ro; i.e., measurement under the microscope of the percentage of light reflected from vitrinite derived from woody tissues of vascular plants). Oil generation from Type II kerogen begins around 0.5% Ro with oil saturation (i.e., level of oil generation sufficient for oil migration and expulsion) beginning around 0.6% Ro. Two factors will be discussed that influence the accurate measurement of vitrinite reflectance at the start of the oil window.

The Woodford Shale (Late Devonian-Early Mississippian) contains both the required thermally mature Type II kerogen and biogenic-silica-rich lithology over much of Oklahoma. An example of early oil generation below a level of oil saturation are post-oil solid bitumen (e.g., solid hydrocarbon) filled fractures in the 0.54% Ro Woodford Shale exposure in southern Oklahoma. The lowest thermal maturity with confirmed oil production is a Woodford Shale well in central Oklahoma at a thermal maturity of 0.59% Ro. However, higher initial potential rates and higher cumulative production occurs at higher thermal maturities.

References Cited

Woodford Shale Play Update: Expanded Extent in the Oil Window

Brian J. Cardott
Oklahoma Geological Survey
Conclusions

Vitrinite reflectance values <0.5% Ro may have errors because (1) pre-oil solid bitumen may be mistaken for vitrinite and (2) this is the level that vitrinite forms from huminite.

Oil production ranges from thermal maturities of ~0.59-1.18% Ro in the Anadarko, Ardmore, and Arkoma Basins and shelf areas (dependent on oil saturation).

Condensate production ranges from thermal maturities of ~1.15-1.67% Ro in the Anadarko, Ardmore, and Arkoma Basins.
Outline of Presentation

- Define the Oil Window, with an Emphasis on the Start of the Window
- Basic Parameters Needed for Oil Production from Shale Resource Plays
- Evaluation of Woodford Shale as a Liquid Hydrocarbon Reservoir
Introduction to Vitrinite Reflectance as a Thermal Maturity Indicator

Brian J. Cardott¹

Search and Discovery Article #40928 (2012)
Posted May 21, 2012

*Adapted from presentation at Tulsa Geological Society luncheon, May 8, 2012
**AAPG©2012 Serial rights given by author. For all other rights contact author directly.

¹Oklahoma Geological Survey, Norman Oklahoma (bcardott@ou.edu)

Abstract

Thermal maturity is one of the most important parameters used in the evaluation of gas-shale and shale-oil plays. Vitrinite reflectance (VRo) is a commonly used thermal maturity indicator. Many operators use the vitrinite-reflectance value without knowing what it is or how it is derived. Conventional wisdom of the Barnett Shale gas play in the Fort Worth Basin indicates the highest gas rates occur at >1.4% VRo. Knowledge of the oil and condensate windows is essential for liquid hydrocarbon production. This presentation answers the questions: what is vitrinite; what is vitrinite reflectance; how is vitrinite reflectance measured; what are some sources of error; and how does one tell good data from bad data?

References

American Society for Testing and Materials (ASTM), 2011. Standard test method for microscopical determination of the reflectance...
The vitrinite-reflectance value is an average of >20 measurements typically following a normalized distribution over a range of ~0.3% Ro.
Part of the Problem of Determining the Vitrinite Reflectance of a Shale at the Start of the Oil Window (~0.5% Ro) is the presence of Vitrinite-Like Pre-Oil Solid Bitumen (genetic bitumen classification of Curiale, 1986)

Pre-Oil Solid Bitumen: early-generation products of rich source rocks, probably extruded from their sources as a very viscous fluid, and migrated the minimum distance necessary to reach fractures and voids in the rock. [Kerogen → Bitumen → Oil (Lewan, 1983)]
Two Common Pre-Oil Bitumen Optical Forms Based on Landis and Castaño (1994)
[regression equation is based on homogenous form]
Vitrinite-like bitumen is the greatest source of error for low thermal maturity shales and possibly the source of reflectance suppression:

Hackley and others (2013) concluded that vitrinite reflectance measurements of early mature Devonian shales in the Appalachian Basin may erroneously include pre-oil solid bitumen reflectance measurements.
Even if some of the Woodford Shale vitrinite-reflectance values <0.5% Ro included lower bitumen-reflectance values, the influence would most likely lower the mean vitrinite-reflectance value by ~0.10-0.20% Ro (e.g., 0.48% Ro may actually be ~0.58-0.68% Ro at the start of the oil window), confirmed by other qualitative petrographic thermal maturity indicators.
PEAK OIL GENERATION

PEAK WET GAS GENERATION

PEAK DRY GAS GENERATION

OIL FLOOR

WET GAS FLOOR

DRY GAS GENERATION LIMIT

DRY GAS PRESERVATION LIMIT

ZONES OF PETROLEUM GENERATION AND DESTRUCTION

ORGANIC MATTER TYPE

AMORPHOUS (OIL) LIPTINITIC

MIXED

COALY (GAS) HUMIC

Modified from Dow (1977), Houseknecht and Hathon (1987), and Taylor and others (1998)

(DOW, 1977)
<table>
<thead>
<tr>
<th>VRo Values</th>
<th>Maturity</th>
</tr>
</thead>
<tbody>
<tr>
<td><0.55%</td>
<td>Immature</td>
</tr>
<tr>
<td>0.55-1.15%</td>
<td>Oil Window (peak oil at 0.90%VRo)</td>
</tr>
<tr>
<td>1.15-1.40%</td>
<td>Condensate–Wet-Gas Window</td>
</tr>
<tr>
<td>>1.40%</td>
<td>Dry-Gas Window</td>
</tr>
</tbody>
</table>

From Jarvie and others, 2005

Guidelines for the Barnett Shale
Jarvie (2012, p. 91): “…thermal maturity values from about 0.60 to 1.40% Ro are the most likely values significant for petroleum liquid generation. Regardless of thermal maturity, there must be sufficient oil saturation to allow the possibility of commercial production of oil”.
Caution: Vitrinite reflectance is applicable in coal only to \(~0.47\%\) Ro.

TABLE III *Oil Reflectance Limits of ASTM Coal Rank Classes*

<table>
<thead>
<tr>
<th>Rank</th>
<th>Maximum reflectance (%)</th>
<th>Maximum reflectance (%)<sup>a</sup></th>
<th>Random reflectance (%)<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Subbituminous</td>
<td>-0.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High volatile bituminous</td>
<td>B 0.57-0.71</td>
<td><1.03</td>
<td>0.50-1.12</td>
</tr>
<tr>
<td></td>
<td>C 0.47-0.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medium volatile bituminous</td>
<td>1.10-1.50</td>
<td>1.03-(1.35-1.40)</td>
<td>1.12-1.51</td>
</tr>
<tr>
<td>Low volatile bituminous</td>
<td>1.50-2.05</td>
<td>>(1.35-1.40)</td>
<td>1.51-1.92</td>
</tr>
<tr>
<td>Semianthracite</td>
<td>2.05-3.00 (approx.)</td>
<td></td>
<td>1.92-2.50</td>
</tr>
<tr>
<td>Anthracite</td>
<td>>3.00 (approx.)</td>
<td></td>
<td>>2.50</td>
</tr>
</tbody>
</table>

^a Procedure of Bethlehem Steel Corporation using “reactive vitrinite” reflectance.

^b From McCartney and Teichmüller (1972, 1974).
Influence of geochemical gelification (vitrinitization) which transforms huminite into vitrinite at ~0.4-0.5% Ro
Most petroleum geochemists use 0.6% Ro as the onset of oil generation (e.g., Peters and Cassa, 1994, Applied source rock geochemistry: AAPG Memoir 60, p. 93-117)

Table 5.3. Geochemical Parameters Describing Level of Thermal Maturation

<table>
<thead>
<tr>
<th>Stage of Thermal Maturity for Oil</th>
<th>Maturation</th>
<th>Generation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R_o (%)</td>
<td>T_{max} (°C)</td>
</tr>
<tr>
<td>Immature</td>
<td>0.2–0.6</td>
<td><435</td>
</tr>
<tr>
<td>Mature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Early</td>
<td>0.6–0.65</td>
<td>435–445</td>
</tr>
<tr>
<td>Peak</td>
<td>0.65–0.9</td>
<td>445–450</td>
</tr>
<tr>
<td>Late</td>
<td>0.9–1.35</td>
<td>450–470</td>
</tr>
<tr>
<td>Postmature</td>
<td>>1.35</td>
<td>>470</td>
</tr>
</tbody>
</table>

^a TAI, thermal alteration index.

^b Mature oil-prone source rocks with type I or II kerogen commonly show bitumen/TOC ratios in the range 0.05–0.25. Caution should be applied when interpreting extract yields from coals. For example, many gas-prone coals show high extract yields suggesting oil-prone character, but extract yield normalized to TOC is low (<30 mg HC/g TOC). Bitumen/TOC ratios over 0.25 can indicate contamination or migrated oil or can be artifacts caused by ratios of small, inaccurate numbers.

^c PI, production index.
Hunt (1996, p. 368): “the lowest value associated with the known generation of conventional oil is about 0.5% [Ro], and 0.6% [Ro] is generally recognized as the beginning of commercial oil accumulations.”
What is the lowest thermal maturity to produce economic quantities of oil in the Woodford Shale?

[Note: the start of the oil window is a zone rather than an exact number]
Example of “Solid hydrocarbon” filling fractures in Woodford Shale (exhumed reservoir) at the McAlister Cemetery Quarry in the Criner Hills Uplift of Southern Oklahoma

(what is the source of the “oil”?)
This Mass Spectrum (m/z 191 mass fragmentogram) indicates low thermal maturity "oil" from local Woodford Shale (data from Dr. R.P. Philp)
Megascopic and microscopic data suggests viscous early oil generation from local 0.54% Ro Woodford Shale in McAlister Cemetery Quarry.

Generated oil but not “oil saturated”
Jarvie (2012, p. 91): “Although an organic-rich source rock in the oil window with good oil saturation is the most likely place to have oil, it is also the most difficult to produce, unless it has open fractures or an organic-lean facies closely associated with it. This is due to molecular size, viscosity, and sorption of oil.”
Oil production from the Woodford Shale is dependent on the development of natural fractures from the brittle biogenic-silica-rich shale.

“There is simply no way to access the hydrocarbons locked in the shale matrix unless there is a system of stable natural fractures and fissures connected to the wellbore.” — from G.E. King (2014)
Caney/Woodford wells are included with Caney

[Emphasis on liquid hydrocarbon production due to low price of natural gas]
Oklahoma Oil/Condensate/Gas Production Caveat

Gas production is reported by the Oklahoma Corporation Commission by WELL.

Oil/condensate production is reported by the Oklahoma Tax Commission by LEASE [production by well is only on single-well leases]

(Production data supplied by PI/Dwights LLC, © 2014, IHS Energy Group)
Oklahoma Geologic Provinces

MAJOR FAULTS

Surface faults

Subsurface faults

Normal faults identified by hachures on relatively downthrown block. Thrust faults identified with solid barbs on hanging wall block.

Geologic provinces from Northcutt and Campbell, 1995
Woodford Shale (2004-2014 Q1)

Wagoner Co. Woodford wells produce ONLY GAS in oil window (less natural fractures and shallow depth?)

Most Woodford “oil wells” (based on GOR <17,000) have low IP gas.

3,114 Woodford wells
Woodford Shale
(2011-2014 Q1)
Thermal maturity of Woodford Shale gas and oil plays, Oklahoma, USA

Brian J. Cardott *
Oklahoma Geological Survey, Norman, OK, USA

ARTICLE INFO

Article history:
Received 6 December 2011
Received in revised form 15 June 2012
Accepted 16 June 2012
Available online 23 June 2012

Keywords:
Woodford Shale
Oklahoma
Gas shale
Shale oil
Vitrinite reflectance
Thermal maturity

ABSTRACT

Being a hydrocarbon source rock and having a brittle (silica-rich) lithologic character makes the Woodford Shale (Late Devonian to Early Mississippian) an important oil and gas shale in Oklahoma. Since 2004, Woodford Shale plays have expanded from producing primarily thermogenic methane in one geologic province to producing thermogenic methane, condensate, oil and biogenic methane in four geologic provinces at thermal maturities from mature (>0.5% vitrinite reflectance, Ro) to post mature (2% to 3% Ro). Condensate is produced at a thermal maturity up to 1.67% Ro. Oil is produced from naturally-fractured, silica-rich shale. Biogenic methane is produced in shallow (<2000ft, 610m) reservoirs down dip from the outcrop in northeast Oklahoma.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The Woodford Shale (Late Devonian to Early Mississippian) is an important hydrocarbon source rock in Oklahoma (Comer and Hinch, 1987; Johnson and Cardott, 1992). It is a black to dark-gray, marine, carbonaceous, and siliceous, partly bedded, shale containing abundant hydric potential (e.g., high total organic carbon content with Type II kerogen), one advantage of the marine Woodford Shale as a gas shale is its quartz-rich composition, specifically rich from Radiolaria and sponge spicule. Kuuskraa et al. (2011) indicated that marine shales (common deposition environment for Type II kerogen) tend to be and can be
Due to a number of variables, Woodford Shale vitrinite isoreflectance maps should be used as a qualitative thermal maturity indicator (e.g., start, middle, end of oil window; condensate window; gas window) and not as a “drill here” indicator because of the following factors:

- Vitrinite reflectance is an average of many values and has some internal variation.
- Woodford Shale vitrinite reflectance was originally determined to estimate the general hydrocarbon source rock potential.
- The Woodford Shale is divided into three informal members: the lower member was deposited more near-shore marine and is where the most and largest vitrinite and petrified wood is found.
- The vitrinite reflectance value is extrapolated to the entire thickness even though the Woodford Shale may be up to 700 ft thick.
Isoreflectance Map of the Woodford Shale in Eastern Oklahoma (Updated November 2011)

Distribution of 117 Woodford Shale samples with vitrinite-reflectance data (n ≥20; whole-rock pellets)

Cardott, in preparation
Woodford Shale Isoreflectance Map based on 81 wells (Cardott, 1989)
Woodford Shale Isoreflectance Map based on 81 wells (Cardott, 1989)
Woodford Shale Isoreflectance Map based on 81 wells (Cardott, 1989)
Woodford Shale Vitrinite Reflectance Data in Southern Oklahoma (Updated October 2013)

Southern Oklahoma Woodford Shale vitrinite reflectance map based on 51 locations

Cardott, in preparation
Woodford Shale Ardmore Basin IP Oil

No production data
1. XTO 1-22H15 McKay Horizontal Well
Love Co.; 22-7S-1E; IP 733 MCFD, 278 BOPD (41° API)

Cum: 113,102 BO; 192,898 MCF

1.18% Ro measured

Single well lease confirmed by operator.
Cum: 113,102 BO; 192,898 MCF

(Production data supplied by Petroleum Information/Dwights LLC dba IHS Energy Group, © 2014)
2. XTO 1-32H Owens Horizontal Well
Carter Co.; 32-3S-3E; IP 3,361 MCFD, 418 BOPD (50° API)

Single well lease confirmed by operator.
Cum: 93,131 BO; 963,655 MCF

(Production data supplied by Petroleum Information/Dwights LLC dba IHS Energy Group, © 2014)
3a. XTO 1-12H Wiggins Horizontal Well
Carter Co.; 13-4S-3E; IP 1,285 MCFD, 150 BOPD

Single well lease confirmed by operator.
Cum: 68,657 BO; 1,153,080 MCF

(Production data supplied by Petroleum Information/Dwights LLC dba IHS Energy Group, © 2014)
3b. Wagner & Brown 1H-1 Hartgraves Horizontal Well
Carter Co.; 1-4S-3E; IP 243 MCFD, 252 BOPD [shut in for
drilling/completion work on other wells on same pad]

Single well lease confirmed by
operator.
Cum: 154,994 BO; 943,423 MCF

(Production data supplied by
Petroleum Information/Dwights LLC
dba IHS Energy Group, © 2014)
Woodford Shale Central OK IP Oil

Most wells have a liner

0.50-0.77% Ro
4. Devon Energy 1-33H Johnson Horizontal Well; Logan Co.; 33-19N-2W; IP 242 MCFD, 285 BOPD

Single well lease confirmed by operator.
Cum: 25,761 BO; 53,415 MCF

In an area recently measured 0.77% VRo

(Production data supplied by Petroleum Information/Dwights LLC dba IHS Energy Group, © 2014)
5. West Star Operating
1-13 Ray Pottawatomie Co.
13-6N-2E
OPL 1333
VRo 0.59% Ro

Tasmanites
(green fluorescence)

Vitrinite 0.57% Ro
5. West Star Operating 1-13 Ray **Vertical** Well
Pottawatomie Co.; 13-6N-2E; IP not reported
(delayed hook-up to gas pipeline)

Cum: 7,045 BO; 845 MCF

0.59% Ro measured

Data from operator
6. West Star Operating 1-33H Salt Creek **Horizontal Well**
Pottawatomie Co.; 33-7N-3E; IP 256 MCFD, 215 BOPD
(delayed hook-up to gas pipeline)

Cum: 12,127 BO; 17,645 MCF

Data from operator
Oil production from well confirmed by operator. Cum: 4,066 BO

(Production data supplied by Petroleum Information/Dwights LLC dba IHS Energy Group, © 2014)
Conclusions

Vitrinite reflectance values <0.5% Ro may have errors because (1) pre-oil solid bitumen may be mistaken for vitrinite and (2) this is the level that vitrinite forms from huminite.

Oil production ranges from thermal maturities of ~0.59-1.18% Ro in the Anadarko, Ardmore, and Arkoma Basins and shelf areas (dependent on oil saturation).

Condensate production ranges from thermal maturities of ~1.15-1.67% Ro in the Anadarko, Ardmore, and Arkoma Basins.