Anadarko Woodford Shale: How to Tie a Shoe*

Craig Caldwell¹

Search and Discovery Article #80408 (2014)**
Posted October 6, 2014

Description of Presentation

A discussion of the Cana Woodford rock types and regional mechanical/lithostratigraphy and their effects on completion design and production.......What have we learned?

Outline

- Introduction
- Regional lithostratigraphy and depositional geometries of the Woodford- Cana area
- Lateral placement and lithostratigraphy
- Regional variations in clay content and porosity

Key Question

Is there a relationship between Woodford rock types, stratigraphy, completion design, and production?

Conclusions

- Changes in depositional patterns demonstrated by isopach maps of the Basal, Lower, Middle and Upper Woodford may be related to the Canadian Flexure.
- Quartz-rich mudrocks and clay-rich mudrocks have distinctively different mechanical properties. Frac stages in clay-rich mudrocks commonly treat at higher pressures, and proppant placement can be challenging.
- Embedment studies demonstrate lower fracture conductivity in more clay-rich lithologies compared to those observed in more silicarich rock.

^{*}Adapted from oral presentation given at AAPG Education Directorate Woodford Shale Forum, Oklahoma City, Oklahoma, May 29, 2014. Please refer to other articles on the Woodford by the author: Search and Discovery Article#50518 (2011), Article#50518 (2012), Article#50518 (2013).

^{**}AAPG © 2014 Serial rights given by author. For all other rights contact author directly.

¹Cimarex Energy Company, Tulsa, OK (<u>ccaldwell@cimarex.com</u>)

- An important part of any Woodford completion program should be a discussion of lateral placement....which can affect productivity.
- Regional variations in clay content (brit nleness) and porosity are among the variables that appear to affect Woodford productivity.

References Cited

Johnson, K.S., R.A. Northcutt, and G.C. Hinshaw, 2000, Petroleum production from marine clastics in Oklahoma, *in* K.S. Johnson, ed., Marine Clastics in Southern Midcontinent, 1997 symposium: Oklahoma Geological Survey Circular 103, p. 1-17.

Kvale, E., and J. Bynum, 2014, Regional upwelling during Late Devonian Woodford deposition in Oklahoma and Its Influence on hydrocarbon production and well completion (abstract): Woodford Shale Forum, Program Booklet, Oklahoma City, May 29, 2014, p. 8-10.

Rottman, K., 2000, Defining the role of Woodford-Hunton Depositional relationships in Hunton stratigraphic traps of western Oklahoma, *in* K.S. Johnson, ed., Platform Carbonates of the Southern Midcontinent: Oklahoma Geological Survey Circular 101, p. 139-146.

Sondergeld, C.H., R.J. Ambrose, C.S. Rai, and J. Moncrieff, 2010, Micro-Structural Studies of Gas Shales: SPE Paper 131771, SPE Unconventional Gas Conference, Pittsburg, Pennsylvania, 17 p.

Anadarko Woodford Shale: How to tie a shoe

Craig D. Caldwell
Cimarex Energy Co., Tulsa, OK

AAPG Woodford Shale Forum May 29, 2014 Oklahoma City, OK

GROUP

ORD

SYLVAN SHALE

VIOLA GROUP

OKLAHOMA

*After Johnson et al (2000)

Clayey, siliceous mudrock

Clayey mudrock

Organicpoor clayey mudrock

Middle **WDFD** Isopach (in feet)

Cana Area

Clayey, siliceous mudrock

Clayey mudrock

Organicpoor clayey mudrock

Woodford Rock Types Anadarko Basin Woodford Play

ROCK TYPE	% QUARTZ	% CLAY	% тос	% GAS-FILLED POROSITY	PRv	Brittleness Index*
Siliceous mudrock	75.2	14.5	4.86	5.4	0.155	0.75
Clayey, siliceous mudrock	54.8	27.4	6.43	6.8	0.164	0.55
Clayey mudrock	40.6	38	5.97	5.6	0.192	0.41
Organic-poor, clayey mudrock	27.3	52.4	0.6	1.8	0.25	0.27

^{*}B.I.=Quartz/Qtz+Carbonates+Clay

(Sondergeld et. al., 2010)

Clayey, siliceous mudrock

Clayey mudrock

Organicpoor clayey mudrock

Middle and Upper Woodford Lithostratigraphy, Anadarko Woodford Play – Core Area

Well Path Showing Woodford Lithostratigraphy and Lateral Placement

Frac' Success and **Woodford Rock Types ROCK TYPE** % QUARTZ % CLAY % SUCCESS Siliceous mudrock **75.2** 14.5 100 Clayey, siliceous 86 54.8 27.4 mudrock **Clayey mudrock** 40.6 38 **53**

Successful frac' defined as one in which >75% of planned proppant amount was placed.

Frac' Success and Woodford Rock Types									
Siliceous mudrock	75.2	14.5	2.8	100	100				
Clayey, siliceous mudrock	54.8	27.4	3.6	86	94				
Clayey mudrock	40.6	38	5.0	53	80				

Successful frac' defined as one in which >75% of planned proppant amount was placed. Table drawn from 906 frac stages.

Fracture Conductivity versus increasing Closure Stress – 40/70 PRC Proppant

Lateral Placement and Productivity

Clayey, siliceous mudrock

Clayey mudrock

Organicpoor clayey mudrock

Woodford Lithostratigraphy Anadarko Basin Woodford Play - SE Area

QUESTIONS

Can a well designed and executed completion overwhelm a relatively poor reservoir rock?

Are engineers smarter than rocks?

Additional Slides

Siliceous mudrock

Clayey, siliceous mudrock

Clayey mudrock

Organicpoor clayey mudrock

Woodford Strat. Kvale and Bynum (2014)

Upper WDFD

A and B

Middle **WDFD**

C and D

Lower **WDFD**

E and F

Basal WDFD

HNTN

G and H

Woodford Lithofacies

Bed-limited dolomite-cemented fractures in thin silicic layers
Siliceous mudrock lithology

Thin-Section Photomicrographs of Woodford Rock Types

MW1B sample showing detrital silt; sample is 34% quartz and 38% clay. Clayey mudrock lithology.

SEM Photomicrographs of Woodford Microfabrics

UW2 sample showing microcrystalline silica with intercrystalline porosity; sample is 76% quartz and 18% clay. Siliceous mudrock lithology.

MW4 sample showing parallel alignment of illite clay; sample is 26% quartz and 44% clay. Clayey mudrock lithology.

Porosity in organic laminae Clayey siliceous mudrock

Woodford Lithostratigraphy With Sonic Scanner Data

