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Abstract 

 

Cyclical sedimentation patterns are common in unconventional resource shales, whether they be carbonate- or siliciclastic-dominated. In many 

resource shales the cyclical patterns have been related to eustatic sea-level fluctuations, even though these fluctuations may sometimes be 

obscured by tectonic overprint. The cyclicity is reflected in repetitive sedimentation patterns which represent alternating relatively 

shallow/oxic- and deeper/anoxic-water deposition. Typical cyclicity might occur in the form of alternating clay/organic-rich and quartz/calcite-

rich strata. In more carbonate-rich sequences, organic-rich marls might alternate with organic-poor limestones. This cyclicity can occur at a 

variety of stratigraphic scales and provides a sequence stratigraphic framework for mapping, correlation, and interpretations. Incised valley fill 

may provide a localized, thicker, more organic-rich stratigraphic section (‘sweet spot’), than adjacent areas.  

 

Within the context of geomechanics, these cyclical strata are termed ‘brittle-ductile couplets. Using the Barnett and Woodford shales as 

examples, clay/organic-rich intervals tend to be relatively ductile (relatively low Young’s Modulus and high Poisson’s ratio), and cleaner 

quartz/calcite-rich intervals tend to be relatively brittle (relatively high Young’s Modulus and low Poisson’s ratio). In carbonate-rich deposits, 

such as the Eagle Ford Formation, re-crystallized, TOC-poor limestones tend to be stronger and more brittle than TOC-rich marls.  

 

Within the context of microseismic, microseisms may be vertically stratified or layered, with some horizons containing more events than other 

horizons. This stratification has been related to brittle-ductile couplets in at least one area, and placed within a sequence stratigraphic 

framework.  

 

mailto:rslatt@ou.edu
http://archives.datapages.com/data/urtec/2014/1934195.htm?q=%2BauthorStrip%3Aslatt+%2ByearSort%3A%5B2014+TO+2014%5D+-isMeetingAbstract%3Amtgabsyes


Within the context of geochemistry, ductile strata tend to contain more TOC and are thus better potential HC source rocks than brittle strata, 

which contain less TOC. Biomarkers (geochemical fingerprints) are useful for interpreting sources and environments of deposition of organic 

matter, and ultimately they are used for environmental zonation of shales.  

 

Using these principles and observations, it is possible to build a sequence stratigraphic framework from multiple data sets to map and correlate 

brittle and ductile strata, organic-/hydrocarbon-rich zones, and more fracturable stratigraphic intervals. A suggested horizontal landing zone is 

the brittle strata within a brittle-ductile couplet. It is hypothesized that when hydraulically fractured, both brittle and ductile strata become 

fractured, and hydrocarbons move from the ductile to the brittle zone, whose fractures remain open after proppant emplacement. With time, 

ductile strata may close around the proppant and become sealed. 
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E&Y: Unconventional resources largest source of US oil, gas 
growth in 2013 
02/10/2014  
Unconventional resources in the US constituted the oil and 
gas industry's largest source of growth in 2013—a trend 
that's expected to continue into 2014, Ernst & Young 
indicated in its US quarterly outlook. In the next 2-3 years, 
the US will look to become a net exporter of gas, while 
dramatically reducing its dependency on oil imports. "The 
surge of the US energy market really was a game changer in 
a relatively short time" said Deborah Byers, E&Y oil & gas 
leader. "And we think those changes will continue to play 
out in 2014." However, capital may move away from 
unconventional plays with the possible freeing up of 
Mexico's energy sector while additional f... 

Oil and Gas J. 

Mauter et al, 2013,  Harvard 
Belfer Center for Science and 
International Affairs. 

OTC, Houston, May, 2014, “The oil and gas industry 
continues to unlock greater resources both onshore and 
offshore— in shale formations and in deepwater. Growing 
production from these areas, particularly in the US, is the 
product of continuous innovation and the resources 
contained in both will play a critical role in meeting growing 
global energy demand.” 
 
Innovation = Technology plus integration 
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Students Graduated since 2005 from Institute Reservoir 
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Figure 10. (A) Paleogeography and facies distribution in the Late Devonian. (B) 

Northwest-southeast schematic cross section showing the relation between facies 

and relative water depth (Modified from Kirkland et al, 1992). 

 

The Woodford Shale has been widely regarded as an important hydrocarbon 

source rock, containing oil-generative organic matter (predominantly oil-prone type-II 

kerogen) (Cardott, 2001; Comer, 2005). However, the Woodford shale is also an 

attractive target for unconventional oil and gas development because it is a mature 

source rock that is widely distributed throughout the southern midcontinent. Well data 

also confirm oil shows from cuttings and core, and a distinctive gas response can be 

identified on mudlogs, all of this confirming the oil and gas potential of the Woodford 

shale (Comer, 2008). Estimates indicate that as much as 85% of the oil produced in 

central and southern Oklahoma originated from the Woodford Shale (Jones and Philp, 

1990). Tasmanites, radiolarian and hystrichosphaerids (acritarchs) are major 

contributors to the organic matter of the Woodford shale (Kirkland et al., 1992). 

Woodford deposition, and resulting 

stratigraphy, is much more complex than 

shown on this map!! 
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Woodford Incised valley fills and karst fills = potential sweet spots (greater thickness/organic-rich) 

Althoff, 2012 
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April 25, 2013  
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WHAT IS BRITTLENESS??? 

BRITTLE DUCTILE 
BRITTLENESS is the 
measurement of stored energy 
before failure, and is function of: 
• Rock strength 
• lithology 
• texture 
• effective stress 
• temperature 
• fluid type 
• diagenesis 
• TOC 

BRITTLENESS INDEX (BI) is the 
most widely used parameter for 
the quantification of rock 
brittleness. 
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Geomechanics 





BI = (Q + Dol)/ (Q + Dol + Lm + Cl + TOC) 
 
Where BI = brittleness  index 
Q = quartz 
C l = clay 
Dol = dolomite 
Lm = limestone (calcite) 
TOC = Total organic carbon 
(Wang and Gale, 2009) 
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“Brittle-Ductile Couplets”  
(Slatt and Abousleiman, 2011) 

Badra, 2011 

Brittle 
        Ductile 

Vertical fracture 

Core Core 

Outcrop 

Brittle  =  biogenic quartz rich 
 (reservoir rock) 
Ductile=  clay-organic rich 
 (HC source rock) 

Thin Sections 

Shattered, recrystallized 
radiolaria 

Homogenous  clay 
Althoff, 2012 



Apply natural fracture distribution to hydraulic fracturing?? 

 

-Hydraulic fracturies  propagate through brittle chert and ductile clay? 

 

 -Proppant goes into both brittle chert and ductile clay 

 

  -After fracturing, the  fractures in chert remain propped open 

 

   -But with time, the ductile beds encase proppant  and close?? 
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Calcareous laminae 

Cored well for calibration 

Ductile 

Brittle 

Barnett Microseismic 



These data show the average TOCpd  (present day) values for each system with the range of values, standard deviation, and 
number of samples. Given the high thermal maturity of these shales, these values are indicative of the nongenerative organic 
carbon (NGOC) values. TOCpd = present-day total organic carbon; stdev = standard deviation; n = number of samples. 

The TOCpd for the top 10 shale-gas resource systems. Jarvie, 2012  

Organic matter 
quantity is 
determined 
by the 
total 
organic 
carbon 
(%TOC) 
content 
(whole-rock 
basis).  

Organic Geochemistry 
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Crude Oil Chromatogram 
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Natural Gas (and oil) 

CH4; methane General formula:   [(Cn)(H(2n) + 2)] 
Example: Propane = C3H8 





        Geochemical logs showing different biomarker ratios for the quarry well (AIR = (C13-C17)/(C18-C22) 2,3,6-trimethyl substituted aryl isoprenoids). 
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Geochemical Biomarkers for paleoenvironmental interpretation: 
   Woodford Shale 

Quartz rich 

Oxic conditions 

 

 

Clay-organic rich 

Anoxic conditions 

Biomarkers  can be used to indicate oxic vs. anoxic bottom water conditions during deposition 



Sequence stratigraphy, 

geomechanics, microseismicity, 

and geochemistry relationships 

in unconventional resource 

shales 
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