The Curious Case of Hydrocarbon-Expulsion Fractures: Genesis and Impact on the Bakken Shales*

Mohammed Duhailan1 and Steve Sonnenberg1

Search and Discovery Article #80398 (2014)**
Posted August 18, 2014

*Adapted from oral presentation at AAPG Annual Convention and Exhibition, Houston, Texas, April 6-9, 2014
**AAPG©2014 Serial rights given by author. For all other rights contact author directly.

1Geology, Colorado School of Mines, Golden, Colorado (malduhai@mines.com)

Abstract

The genesis and impact of hydrocarbon-expulsion fractures on the Bakken shales were investigated by integrating epifluorescence petrographic and pressure transient analyses. In early exploration vertical wells, drilling breaks from ten minutes to one minute per foot with gas increases from ten units to several hundred units were considered poor shows in the source rocks of the Bakken shales. Drill stem tests (DST) over the Bakken shales were reported with average production rates that reach several tens of barrels per day. These shales were overpressured with no matrix porosity in evidence and permeability in the micro-Darcy scale. Production was assumed to come from fractures. Speculative conclusions were drawn about these fractures being related to source-rock maturity, hydrocarbon expulsion, and overpressuring. These conclusions were a significant promoter for exploration in the Bakken Formation. The curious case of hydrocarbon-expulsion fractures has encouraged a review of 64 DSTs over different intervals that include the Bakken Formation and/or the underlying Three Forks Formation. Resistivity logs, cores, and thin-sections were studied in order to conduct an integrated geological interpretation for pressure-transient behaviors of the Bakken shales. The study shows that the Bakken shales are naturally fractured and can be interpreted on resistivity-curve separation. The Three Forks and Middle Bakken pressure-transient behaviors show spherical flow, which indicate that there is always contribution from the Bakken Shales. The Bakken pressure-transient behavior shows dual permeability (naturally fractured), with low storage capacity within the fracture system, implying that fluid is stored mostly in the matrix. The study also revealed that the matrix releases its fluid rapidly to the fracture system, indicating rather high temporal permeability and implying that hydrocarbon-expulsion fractures contribution is present. The significance of hydrocarbon-expulsion fractures resides in their ability to provide higher permeability pathways through the Bakken shales and explains their high deliverability. The volume expansion due to hydrocarbon generation is invoked as a mechanism to increase pressures to levels of inducing expulsion fractures responsible for primary migration of hydrocarbons.

References Cited

The Curious Case of Hydrocarbon-Expulsion Fractures:
Genesis and Impact on the Bakken Shales

Mohammed Duhailan
Steve Sonnenberg
The Curious Case of Hydrocarbon-Expulsion Fractures:
Genesis and Impact on the Bakken Shales

“Speculative conclusions regarding the relationship between source-rock maturity, hydrocarbon generation, geopressuring and fracturing suggest an opportunity in exploration for unrecognized and unlooked-for “unconventional” accumulations of potentially very large regional extent.”

(Meissner, 1978)
The shale did contain some oil show in the black carbonaceous pieces, which were primarily non-calcareous, with fine disseminated pyrite, and displayed a slow to moderate streaming cuts. No matrix porosity was in evidence in the black shale, and the cuts were assumed to have come out of micro-fractures or off of fracture planes.
Objectives

Qualitative Pressure Transient Analysis

Analysis of Petroleum-Expulsion Fracturing

Epifluorescence petrography
Geological Background

(modified from Sonnenberg, 2009 which is modified from Webster, 1984 and Meissner, 1978)
Due to no flow or not enough pressure build-up, 30% of the DSTs can’t be analyzed.

49% of the DSTs that can or could be analyzed imply naturally fractured Bakken.
Qualitative Pressure Transient Analysis
Meridian MOI 21-11

GR | Resistivity | Sonic | Sonic waveform

10,458 | 10,531 | DST-2 | Bakken

Pressure (psi) vs Time (min)

10,000 | 1,000 | 100 | 10 | 1

10,000 | 1,000 | 100 | 10 | 1
Three Forks Spherical Flow

Big Sky #1

DST-1
10,048-10,142
Rec Depth (10140)
Three Forks

Davis #1-16

DST-2
8624-8647
Mid Bakken
Tight Formation?

Bakken #1

Wolf Federal #1

Pressure (psi) vs. Time (min)

DST-3

8720

10,505

DST-1

8796

10,605

8720

10,505
Fractured Bakken should have flowed!!

The calculated Damage Ratio of 11.49, indicates that significant well-bore damage was present at the time of this drillstem formation test. The Damage Ratio implies that the production rate should have been 11.49 times greater than that which occurred if well-bore damage had not been present.
• **Upper and Lower Bakken Shales** are interpreted to be naturally fractured based on resistivity curves separation

• **Three Forks and Mid Bakken** pressure-transient behaviors show spherical flow which indicates vertical contribution from either within, or from the Bakken Shales

• Bakken pressure-transient behavior shows dual permeability (naturally fractured) with low fracture system’s storage capability (ω) implying that fluid is mostly stored in the matrix

• **Matrix gives up its fluid rapidly to fracture system indicating high temporal permeability (λ)** implying that microfractures contribution is present
Rose #1, 1986

- Drilling break
- Oil Shows
- Natural fractures

- DST-4: Flowed 42.30 bbls/day
- Abnormally high pressure
- Core $k \approx 0.01$ md
 Core $\phi \approx 4\%$
Analysis of Petroleum-Expulsion Fracturing

Force of Petroleum Expulsion

- Fracturing
- Force of Petroleum Expulsion
- Pressure Increase
- Petroleum Generation & Volume Expansion
- Organic Rich & Thermally Matured
Volume Expansion

\[V_{wd2} + V_{B2} + V_o \]

\[V_{wf} + V_{wd1} + V_{B1} + V_k \]

\[V_{wi} + V_{ki} \]
Pressure Increase
Kerogen-to-Bitumen
(Role of organic richness)

\[\Delta P_{kB} = \frac{F(D_{kB} - 1)}{V_R \left(\frac{3(1 - 2v)}{E} + C_w \right) + F(D_{kB} C_O - C_k) + \left(\frac{3(1 - 2v)}{E} + C_k \right)} \]

10 % Porosity Mudrocks

- Rich (25 % TOC)
- Lean (0.5 % TOC)
\[\Delta P_{BO} = \frac{F \left[D_{Bo} \left(\frac{x_w}{1 - x_w} + 1 \right) - \left(\frac{x_w}{1 - x_w} - 1 \right) \right]}{\left(\frac{x_w}{1 - x_w} \right) \left(\frac{3(1 - 2v)}{E} + C_w - FC_w + FD_{Bo}C_o \right) + F(D_{Bo}C_o - C_B) + \left(\frac{3(1 - 2v)}{E} + C_B \right)} \]
Pressure Increase
Bitumen-to-Oil
(Role of Time & Temperature)

\[
\Delta P_{BO} = \frac{\left(1 - e^{-tA_ne^{-\frac{E}{RT}}}\right)}{\left(\frac{A_xe^{B_xT}}{1 - A_xe^{B_xT}}\right)} \left(3(1 - 2v)\right) + c_w + \left(1 - e^{-tA_ne^{-\frac{E}{RT}}}\right) c_w + D_{Bo}c_o + \left(1 - e^{-tA_ne^{-\frac{E}{RT}}}\right) \left(D_{Bo}c_O - c_B\right) + \left(\frac{3(1 - 2v)}{E} + c_B\right)
\]
Initiation of microfracture:

\((\text{negative}) \ Total \ tangential \ stress > Tensile \ strength\)

\[-S_t > T\]

Tangential stress at x, y due to \(S_v\) and \(S_h\):

At x: \(S_{out} = S_h(1 + 2/\psi) - S_v\)
At y: \(S_{out} = S_v(1 + 2\psi) - S_h\)

Tangential stress at x, y due to internal stress \(S_{in}\) that is due to Pressure \(P\):

At x: \(S_{in} = P(1 - 2/\psi)\)
At y: \(S_{in} = P(1 - 2\psi)\)

Total tangential stress at x and y:

\(S_t = S_{out} + S_{in}\)

\(S_{tx} = S_h(1 + 2/\psi) - S_v + P\left(1 - 2/\psi\right)\)
\(S_{ty} = S_v(1 + 2\psi) - S_h + P(1 - 2\psi)\)
Expulsion Fracturing
Bitumen aspect ratio/tensile strength anisotropy and poroelastic behavior

For horizontal microfracturing considering strength anisotropy and anisotropic poroelastic behavior:

\[
\Delta P > \frac{S_v(1 + 2\psi) - \frac{E_h}{E_v} \frac{v_v}{1 - \nu_h} (S_v - \alpha P_{water}) + \alpha P_{water} + \frac{T_h}{T_{ratio}}}{2\psi - 1}
\]

For vertical microfracturing considering strength anisotropy and anisotropic poroelastic behavior:

\[
\Delta P > \frac{\left[\frac{E_h}{E_v} \frac{v_v}{1 - \nu_h} (S_v - \alpha P_{water}) + \alpha P_{water} \right] (1 + 2/\psi) - S_v + T_v T_{ratio}}{2/\psi - 1}
\]
Analysis of Petroleum-Expulsion Fracturing

Sequence of petroleum-expulsion fracturing

Pre-oil Generation

Initial oil Generation

Primary oil Generation

Post-oil Generation

Initial Expulsion

Initial Migration

Primary Expulsion

Internal Migration

Post-Expulsion

External Migration
Petroleum-Expulsion Fracture Map

Expulsion Fracture Map = (Expulsion Pressure) – (Expulsion-Fracturing Pressure)
“The relationship between source-rock maturity, hydrocarbon generation, geopressuring and fracturing suggest an opportunity in exploration for unrecognized and unlooked-for “unconventional” accumulations of potentially very large regional extent.”

(Meissner, 1978)
Acknowledgments

Colorado School of Mines Bakken Consortium
North Dakota Geological Survey
Wagner Petrographic
Saudi Aramco