Integrated Assessment of Water Resources to Support Unconventional Play Development, West-Central Alberta*

Brad J. Hayes¹, Ben Kerr², and Derek Brown³

Search and Discovery Article #80396 (2014)**
Posted August 18, 2014

*Adapted from oral presentation given at 2014 AAPG Annual Convention and Exhibition, Houston, Texas, April 6-9, 2014
**AAPG©2014 Serial rights given by author. For all other rights contact author directly.

¹Petrel Robertson Consulting Ltd. Calgary, Alberta, Canada (bhayes@petrelrob.com)
²Foundry Spatial Ltd. Victoria, British Columbia, Canada
³Strategic West Energy Ltd. Victoria, British Columbia, Canada

Abstract

The Integrated Assessment of Water Resources Project (IAWR) characterizes surface and subsurface water resources across broad unconventional oil and gas play fairways in west-central Alberta, and provides a basis for future, more detailed characterization projects addressing specific unconventional developments. Technical work is being performed by independent consulting groups, while project governance and financial support is provided by a consortium of oil and gas producers under the umbrellas of PTAC (Petroleum Technology Alliance of Canada) and CAPP (Canadian Association of Petroleum Producers). Several shale and tight sandstone and carbonate reservoirs are now being developed in the heart of the Western Canada Sedimentary Basin using horizontal wells and multifrac completions. Devonian Swan Hills carbonates and Duvernay shales, Triassic Montney siltstones, and Cretaceous Cardium sandstones are the best-known and most widespread plays. While drilling and completions methodologies vary by play and are still being optimized in many cases, there is a clear need for large source water volumes and secure water disposal zones to support these operations. A revised regulatory framework being put into place by the Alberta Energy Regulator demands that operators plan their development operations, including water sourcing and disposal, on a play-wide basis, and in collaboration with other operators where possible. It is important, therefore, that operators have regional knowledge of water resources, and the ability to interact readily with nearby competitors. In response to these needs, the IAWR Project has been designed to assess water resources at surface, in surficial sediments and shallow non-saline aquifers, and in deep saline aquifers. Initial work focused on data collection, cataloguing, and display in an integrated GIS-driven website. As the project reaches completion, more detailed modeling and analytical / predictive work is being completed. Collaboration with the Regulator ensures that Project work can be used directly in regulatory applications. Ultimately, Project results will be made public so that all concerned stakeholders can gain a common understanding of the best technical solutions for use of both non-saline and saline water resources. The IAWR Project is an excellent example of the collaborative work that the industry needs to undertake in order to demonstrate environmental sensitivity in developing unconventional resources.
Reference Cited

INTEGRATED ASSESSMENT OF WATER RESOURCES TO SUPPORT UNCONVENTIONAL PLAY DEVELOPMENT, WEST-CENTRAL ALBERTA

Brad J. Hayes, Petrel Robertson Consulting Ltd.
Ben Kerr, Foundry Spatial Ltd.
Derek Brown, Strategic West Energy Ltd.
Water Resources for Unconventional Oil and Gas Plays in Western Canada

- Western Canada is becoming one of the world’s leading provinces for development of unconventional oil and gas reservoirs
 - Significant water demands for hydraulic fracturing and waterfloods
 - Flowback and produced waters require safe disposal
- Surface water supplies are limited
 - Limited precipitation, depleting water reserves in montane glaciers
- Many competing water demands
 - Domestic and agricultural
 - Industrial – power plants, pulp and paper
 - Conventional oil and gas, oil sands development
- Society is concerned that water use associated with unconventional hydrocarbon development could impact clean water supplies
Unconventional Reservoirs – West-central Alberta

- **Duvernay**
 - Widespread, organic-rich shale with broad liquids-rich gas fairway
 - Intensive (and expensive) exploration and appraisal since 2009

- **Montney**
 - Deep Basin gas, liquids-rich gas, and locally oil

- **Swan Hills**
 - Tight carbonate reservoir facies flanking conventional reefal oil pools

- **Cardium**
 - Tight sandstones in broad oil-prone fairway
 - Within existing pools, halo/fringe plays, broad tight sand sheets
 - Water sources to support large waterfloods also required
Existing regulatory framework governing water usage by the petroleum industry was designed for conventional hydrocarbon development.

- Not adequate to address the larger water source and disposal needs of unconventional development.

Alberta Energy Regulator has recognized the need to create an Unconventional Regulatory Framework (URF).

- Regional, play-based water use planning – instead of single-well approvals.
- Must build upon a comprehensive regional knowledge of water resources.
Integrated Assessment of Water Resources (IAWR) for Unconventional Oil & Gas Plays, West-Central Alberta

- A systematic assessment of all water resources to support best decisions on water sourcing and disposal by unconventional hydrocarbon operators
 - Surface waters
 - Shallow non-saline aquifers in unconsolidated sediments and shallow bedrock
 - Deep saline aquifers

- Project sponsors:
 - Petroleum Technology Alliance Council (PTAC)
 - 10 operating companies in 2014
 - Alberta government agencies – AESRD and AER – providing technical data and logistical / regulatory guidance
Models for the IAWR Project

- Horn River Basin Deep Saline Aquifer Assessment Project

- Montney Water Project
 - Geoscience BC, Montney producers (2010-2011)

- Liard Basin Deep Saline Aquifer Assessment
 - Geoscience BC, Liard exploration companies (2014)

- Central Mackenzie Valley and Deh Cho Territory Deep Saline Aquifer Characterization Projects
 - Northwest Territories Geoscience Office (2012-2013)

- Northeast Water Tool (NEWT) Development
 - B.C. Oil & Gas Commission (2011)
Study Area

- Built around outlines of Montney and Duvernay unconventional play fairways
- Includes other unconventional fairways such as Cardium and Swan Hills
- Surface study area includes headwaters of watersheds

Surface study area (142,000 km\(^2\))

Subsurface study area (91,000 km\(^2\))
Integrated Assessment of Water Resources for Unconventional Oil & Gas Plays, West-Central Alberta

- Component 1: Deep saline aquifers
- Component 2: Shallow non-saline aquifers
- Component 3: Surface waters
Deep Saline Aquifers
Regional Hydrostratigraphy

Deep Basin Regime in West

Cardium
Cadotte
Bluesky
Cadomin
Montney
Pekisko

Deep Saline Aquifers
Deep Saline Aquifers – Characterization Process

- Characterize reservoir distribution and quality
 - Create stratigraphic database
 - Integrate lithological / reservoir quality information – cores, sample cuttings, logs
 - Map reservoir unit – gross thickness, net porous reservoir

- Hydrogeological analysis
 - Characterize fluid distributions and hydrogeological regimes using test and pressure data
 - Map and assess water chemistry / quality
 - Analyze water production and injection performance
Deep Saline Aquifers – Cadotte Member

- Progradational shoreface complex
 - Sharp erosional limit in the south, shales out seaward to north
- Generally >15m thick, good continuity along shoreline trends
Cadotte Hydrogeology

- Regional aquifer is prospective updip of Deep Basin
 - Abundant water source wells

- Mapping, tests, and water source well performance outline high/low prospectivity aquifers

- 15,000-25,000 mg/L TDS
Presenter’s notes: Petroleum borehole data

Distribution of Deep Saline Aquifers

- Northern areas have multiple deep saline options
- Southern areas have few or none
Integrated Assessment of Water Resources for Unconventional Oil & Gas Plays, West-Central Alberta

- Component 1: Deep saline aquifers
- Component 2: Shallow non-saline aquifers
- Component 3: Surface waters
Shallow Bedrock Hydrostratigraphy

- Section dominated by aquitards or local channel aquifers
- Basal Belly River carries brackish to locally non-saline waters
- Paskapoo aquifer carries fresh water
Paskapoo Formation – Regional Isopach

- >700 m thick in subsurface close to Foothills; some outcrop sections up to 1000 m

Lyster and Andriashek, 2012
Paskapoo Aquifer Characterization

- Focus on western areas where basal Paskapoo sandstones (Haynes Member) are buried relatively deeply
 - Waters are expected to be non-saline, but below depths normally drilled for domestic / agricultural / industrial water wells

- Characterizing substantial non-saline water resources not accessible to shallow water wells may support consideration of “deep” Paskapoo as a source zone for unconventional hydrocarbon development
 - Particularly important in southern areas where little deep saline source potential exists
Shallow Non-Saline Aquifer Characterization – Data Integration Challenges

- Capturing and integrating shallow data (above base of surface casing in petroleum boreholes) is a major challenge.
 - Historical hydrogeological studies
 - Driller’s log and flow information from shallow water wells
 - Through-casing logs from petroleum boreholes
 - Alberta Research Council logged/cored stratigraphic boreholes
 - Mineral exploration borehole cores
 - Surface mapping
Shallow Non-Saline Aquifer Characterization – Data Integration Challenges

Lyster and Andriashek, 2012
Integrated Assessment of Water Resources for Unconventional Oil & Gas Plays, West-Central Alberta

- Component 1: Deep saline aquifers
- Component 2: Shallow non-saline aquifers
- Component 3: Surface waters
Surface Watershed Databasing and Analysis

- Systematically assemble relevant climate and hydrography data to support assessment and modeling of surface water availability at all locations
 - Climate
 - Hydrology
 - Land Cover
 - Surficial Geology
 - Shallow Hydrogeology
Surface Watershed Databasing and Analysis

Hydrologic Analysis
(183 hydrometric stations)
Surface Water and Groundwater Allocations

- > 30,000 existing allocations
 - 2 : 1 ratio in number of licenses, SW:GW
 - 3.3 : 1 ratio in consumptive use, SW:GW
- > 1 billion m3 of water managed under license
- Commercial / industrial are largest water users
- Greatest number of licenses are traditional agricultural
Surface Water Flow Modeling

- Modeling of surface flow being undertaken using:
 - Detailed drainage network and catchment boundaries
 - Flow data from hydrometric stations
 - Existing surface and groundwater allocations
 - Climate and vegetation data

- Iterative process with stochastic elements; must match results across watershed boundaries

Comparison of scale between model output and existing contoured products
Customized Surface Water Query Tools
Customized Surface Water Query Tools

- Modeling will support development of a query tool like BC’s Northeast Water Tool (NEWT)
 - GIS-based hydrology decision support tool
 - In response to queries, will present predicted stream flow, existing allocations and environmental flow needs corresponding to query location, for any location
IAWR Project Summary

- Integrated Assessment of Water Resources provides a complete water source and disposal inventory
 - Basis for informed decisions on water in support of unconventional hydrocarbon development

- Collaboration among industry partners, government agencies, and technical consultants essential to project completeness and credibility

- Supports development of appropriate regulatory regime governing unconventional hydrocarbon development, based on data and technical work available to all stakeholders

- Provides a regional framework upon which operators can base more detailed mapping and analyses to support specific projects
 - Spatially enabled database management allows integration of custom datasets and real-time data transparency
Acknowledgements

- **Co-authors**
 - Ben Kerr, Foundry Spatial
 - Derek Brown, Strategic West Energy

- **Project funding participants**
 - CNRL, Cequence, Chevron, ConocoPhillips, Encana, Husky, Mosaic, NuVista, PennWest, Shell, Talisman

- **AESRD and AER / AGS scientists and management**

- **PTAC Staff**

- **PRCL Staff**