Monitoring the Active Migration and Biodegradation of Natural Gas in the Trinity Group Aquifer at the Silverado Development in Southern Parker County, Texas*

Alan S. Kornacki¹ and Mark McCaffrey²

Search and Discovery Article #80395 (2014)**
Posted August 18, 2014

*Adapted from oral presentation given at 2014 AAPG Annual Convention and Exhibition, Houston, Texas, April 6-9, 2014
**AAPG©2014 Serial rights given by author. For all other rights contact author directly.

¹Weatherford Laboratories Inc. Houston, Texas, US (alan.kornacki@weatherfordlabs.com)
²Weatherford Laboratories Inc. Dallas, Texas, US

Abstract

The Lower Cretaceous Trinity Group aquifer contains natural gas generated by the Barnett Formation that migrated over geologic time into the aquifer from the underlying Pennsylvanian Strawn Group across an angular unconformity. Thermal gas dissolved in water samples collected from that aquifer generally is severely biodegraded except where water wells either occur above – or inadvertently penetrate – gassy Strawn strata. We describe changes in the abundance and the molecular and C isotopic composition of the natural gas dissolved in water samples collected periodically from all accessible wells in the Silverado Development between December 2010 and December 2012. Initially the gas dissolved in only six out of 22 water wells contained >20 mol% methane, and the presence of isotopically-heavy ethane (> −24 per mil) in most water samples proved that natural gas in the aquifer generally was severely biodegraded. By May 2012, the amount of dissolved methane had increased substantially at one well location from ∼26 mol% to ∼63 mol%. The C isotopic composition of ethane indicates dissolved natural gas was less biodegraded at two other well locations than it was in December 2010, while ethane was more biodegraded than previously measured at a different well location. We also observed changes in the amount of dissolved methane and the C isotopic composition of ethane in water samples collected from several wells in August 2012 and December 2012. During the 24–month period that we studied water samples collected from the Trinity Aquifer in the Silverado Development, the amount and/or the C isotopic composition of HC gas compounds dissolved in water changed in ∼20% of the wells. At one well location, the dissolved natural gas systematically became more biodegraded every time water was collected. But at two other well locations, the data indicate that a pulse of fresh natural gas migrated into the Trinity Aquifer across the unconformity between December 2010 and May 2012, and by December 2012 subsequently was biodegraded by microbes in that aquifer. Temporal and spatial changes in the amount and composition of natural gas dissolved in water samples demonstrate that thermal gas in the Strawn Group episodically migrates vertically across an unconformity into the Trinity Aquifer. These data reinforce our prior conclusion that two nearby horizontal production wells completed in the Barnett Formation are not the source of the natural gas dissolved in the Trinity Aquifer.
Monitoring the Active Migration and Biodegradation of Natural Gas Dissolved in the Trinity Group Aquifer at the Silverado Development in Southern Parker County, Texas

Alan S. Kornacki, Weatherford Laboratories Inc., Houston, TX
Mark A. McCaffrey, Weatherford Laboratories Inc., Dallas, TX
Acknowledgments

We thank Range Production Company for giving us permission to present these results. We also thank the staff of Premier Environmental Services Inc. for efficiently collecting a large number of water well samples, and Isotech Laboratories for measuring high-quality geochemical data on the natural gas dissolved in those water samples.
Presentation Outline

• Introduction

• Evidence for the presence of native stray gas in the Trinity Aquifer

• Results from the water-well monitoring program

• Key observations and conclusions
Monitoring the Active Migration/Biodegradation of Gas in the Trinity Group Aquifer at the Silverado Development

Stratigraphy and Petroleum Geology of the Ft Worth Basin

Pollastro et al. (2007)
August 2009: Range Production Co. begins producing Barnett gas from two horizontal wells (Butler 1H and Teal 1H) drilled >5,000 ft below the Trinity Aquifer.

August 2010: A local homeowner (Mr. Lipsky) complains that his water well now contains gas. The Texas RRC and the US EPA launch independent investigations.

December 2010: EPA issues Emergency Administrative Order (EAO), concluding Range caused/contributed to the presence of methane and benzene in the two water wells. EPA bases decision on C and H isotopic composition of methane.

January 2011: TRRC holds public hearing to determine if Range gas wells caused or contributed to contamination of water wells. EPA and Mr. Lipsky do not attend.

March 2011: TRRC rules Range gas wells have not contaminated water wells.

March 2012: EPA withdraws EAO against Range Production Company. Range voluntarily implements a program to monitor dissolved gas in nearby water wells.

Currently: Mr. Lipsky and several neighbors continue to allege that production from Barnett gas wells is responsible for natural gas dissolved in their water wells.
The Trinity Aquifer Contains Stray Gas That Migrated from Strawn Strata Across an Angular Unconformity

Four years before Range drilled its gas wells

A water well inadvertently drilled into the Strawn in 2003 flowed 122,000 cf gas/day before it was P&A.

Structural Cross Section Through the Hurst and Lipsky Water Wells, the Teal Gas Well, Lake Country Acres Water Wells, and the Center Mill Gas Field

Shallow Strawn gas sands
The Trinity Aquifer Contains Stray Gas That Migrated from Strawn Strata Across an Angular Unconformity

Several Shallow Strawn Gas Fields Occur in This Area

- **Center Mill Gas Field (Strawn Gp.)** located 6,000 ft SE of Lipsky well
- **Butler and Teal gas wells**

![Stratigraphic Chart](chart.png)

![Shallow Strawn Gas Fields Map](map.png)
The Trinity Aquifer Contains Stray Gas That Migrated from Strawn Strata Across an Angular Unconformity

Hydrogeology of the Trinity Aquifer

Natural Gas and Brine Migrate from Strawn Sandstones into the Trinity Aquifer Across an Angular Unconformity
Using Gas Fingerprinting Technology to Determine the Origin of Stray Gas in the Trinity Aquifer

Natural Gas Component of Most Headspace Gas Samples from Water Wells Studied Contain >2.5 mol% Nitrogen

Geochemical Evidence That Natural Gas Collected from the Lipsky Water Well Originated in the Strawn Group
Biodegradation Influences the Molecular and C Isotopic Composition of Thermal Gas

- Microbes metabolize ethane, propane, and n-butane relative to methane.
- Microbes metabolize HC compounds that contain isotopically-light C (12C) relative to the same gas compounds that contain isotopically-heavy C (13C).
- Compared to unaltered natural gas, thermal gas that is biodegraded:
 - Has higher methane/ethane and methane/propane ratios
 - Contains residual ethane and/or propane that are enriched in isotopically-heavy C: i.e., exhibit relatively low δ^{13}C values.
Monitoring the Active Migration/Biodegradation of Gas in the Trinity Group Aquifer at the Silverado Development

Methane/Ethane Ratio of Natural Gas Dissolved in Well Water Samples from the Silverado Development

- Methane in Dissolved Gas
 - Minor C₁ (≈5-20 mol%)
 - Moderate C₁ (≈20-40 mol%)
 - Abundant C₁ (>60 mol%)

Days After December 1, 2010

- 1/2010
- 5/2012
- 8/2012
- 11/2012
- 2/2013
- 9/2013

Range gas wells
Monitoring the Active Migration/Biodegradation of Gas in the Trinity Group Aquifer at the Silverado Development

Methane/Ethane Ratio of Natural Gas Dissolved in Well Water Samples from the Silverado Development

- Methane in Dissolved Gas
 - Minor C$_1$ (~5-20 mol%)
 - Moderate C$_1$ (~20-40 mol%)
 - Abundant C$_1$ (>60 mol%)

No significant change in amount of biodegradation

- Range gas wells
- No significant change in amount of biodegradation (Purdue and Lipsky wells)
Monitoring the Active Migration/Biodegradation of Gas in the Trinity Group Aquifer at the Silverado Development

Methane/Ethane Ratio of Natural Gas Dissolved in Well Water Samples from the Silverado Development

- Methane in Dissolved Gas
 - Minor C₁ (≈5-20 mol%)
 - Moderate C₁ (≈20-40 mol%)
 - Abundant C₁ (>60 mol%)

- Range gas wells
- No significant change in amount of biodegradation (Purdue and Lipsky wells)

Graph showing the percentage of methane in gas samples over time from different wells. The graph includes data from 1/2010 to 9/2013.
Monitoring the Active Migration/Biodegradation of Gas in the Trinity Group Aquifer at the Silverado Development

Methane/Ethane Ratio of Natural Gas Dissolved in Well Water Samples from the Silverado Development

- **Methane in Dissolved Gas**
 - Minor C1 (~5-20 mol%)
 - Moderate C1 (~20-40 mol%)
 - Abundant C1 (>60 mol%)

- **Range gas wells**: No significant change in amount of biodegradation (Purdue and Lipsky wells)

- **Dawson well**: No significant change in amount of biodegradation (Purdue and Lipsky wells)

- **Significant increase in fresh gas**
 - (Dawson well)
 - (Stites well)

- **Gas slowly becomes more biodegraded**
 - (Merrymon, Teal, and Hurst wells)

- **Fresh gas migrates into aquifer**
 - (Merrymon well)

- **Rapid increase in biodegradation**
 - (Thompson well)

- **Gas wells**
 - No significant change in amount of biodegradation

- **Dates**
 - 1/2010
 - 5/2012
 - 8/2012
 - 11/2012
 - 2/2013
 - 5/2012
 - 9/2013
Monitoring the Active Migration/Biodegradation of Gas in the Trinity Group Aquifer at the Silverado Development

C Isotopic and Molecular Composition of Natural Gas Dissolved in Well Water Samples (Silverado Development)

- Methane in Dissolved Gas
 - Minor C$_1$ (≈ 5-20 mol%)
 - Moderate C$_1$ (≈ 20-40 mol%)
 - Abundant C$_1$ (>60 mol%)

Graph Details
- **δ^{13}C per mil, PDB**
- **Methane/Ethane (mol%)**

Legend
- Butler 1H Gas Well
- Teal 1H Gas Well
- Thompson #6
- Merryman #7
- Hurst #14A
- Matthews #25
- Wells #1
- Struths #13
- Hurst #15
- Williams #19
- Simpsons #22
- Purdue #2
- Lipsky Old Well #8A
- Lipsky New Well #8B
- Stites #9 (12/2010)
- Stites #9 (05/2012)
- Dawson #28 (12/2012)
- Dawson #28 (09/2013)

Range
gas wells
Monitoring the Active Migration/Biodegradation of Gas in the Trinity Group Aquifer at the Silverado Development

C Isotopic and Molecular Composition of Natural Gas Dissolved in Well Water Samples (Silverado Development)

- **Methane in Dissolved Gas**
 - Minor C\(_1\) (=5-20 mol%)
 - Moderate C\(_1\) (=20-40 mol%)
 - Abundant C\(_1\) (>60 mol%)

- **Anomalously heavy ethane**

- **No significant change in amount of biodegradation**

Gas slowly becomes more biodegraded (Merryman) (2/2013)

Rapid increase in biodegradation (Thompson well)

- **(12/2010)**
- **(12/2012)**
- **(2/2013)**

Range gas wells
Monitoring the Active Migration/Biodegradation of Gas in the Trinity Group Aquifer at the Silverado Development

C Isotopic and Molecular Composition of Natural Gas Dissolved in Well Water Samples (Silverado Development)

- **Methane in Dissolved Gas**
 - Minor C_1 (\approx 5-20 mol%)
 - Moderate C_1 (\approx 20-40 mol%)
 - Abundant C_1 (> 60 mol%)

- **Anomalously heavy ethane**
 - No significant change in amount of biodegradation

- **Gas slowly becomes more biodegraded**
 - Rapid increase in biodegradation

- **Fresh gas migrates into aquifer**
 - Significant increase in fresh gas

- **Range gas wells**

Graphical Representation

- **X-axis**: Methane/Ethane (mol%)
- **Y-axis**: C Isotopic Composition of Ethane (^{13}C per mil; PDB)

Sample Dates
- (5/2012)
- (12/2010)
- (9/2013)

Well Locations
- Butler 1H Gas Well
- Teal 1H Gas Well
- Thompson #6
- Merryman #6
- Hurst #14A
- Matthews #7
- Matthews #25
- Wells #1
- Struths #13
- Hurst #15
- Williams #19
- Simpson #22
- Purdue #2
- Lipsky Old Well #8A
- Lipsky New Well #8B
- Stites #9 (12/2010)
- Stites #9 (05/2012)
- Dawson #28 (12/2010)
- Dawson #28 (09/2013)
January 2011: Distribution of Biodegraded Gas in Water Samples Proves A Gas Plume Is Not Migrating Through the Aquifer from Range Wells to Lipsky Water Well

Methane in Dissolved Gas Sample
- **Trace Methane** (<0.5 mol%)
- **Minor Methane** (≈5-20 mol%)
- **Moderate Methane** (≈20-40 mol%)
- **Abundant Methane** (>60 mol%)

Gas is much less biodegraded: Ethane ≤ -30.0
- **Butler/Teal:** -35.2 (Penetrated Strawn)
- **Dawson:** -29.6
- **Lipsky:** -34.1; -34.1 (Penetrated Strawn)
- **Stites:** -32.2; -32.4
- **Matthews:** -19.5
- **n.d.**

Gas is severely biodegraded (excluding Purdue well): Ethane > -24.0
- **Hurst 14A:** -23.2
- **Hurst:** -29.9
- **Wells:** -20.6
- **Williams:** -20.0
- **Simpson:** -22.9
- **Merryman:** -18.0
- **Struths:** -32.2
- **Purdue:** -32.3
- **Dawson:** -29.6; -28.9
- **Williams:** -20.0; -16.1

Butler/Teal: -35.2

Values are C Isotopic Composition of Ethane
i.e., -35.2 (per mil; PDB)
n.d. = Not Determined (Below detection limit)

A fresh gas plume cannot be migrating through the aquifer from the Butler/Teal wellsite to the Lipsky water well

For contact information, please visit our website: www.weatherfordlabs.com

Methane in Solution Gas Sample
- **Trace Methane** (<0.5 mol%)
- **Minor Methane** (~5-20 mol%)
- **Moderate Methane** (~20-40 mol%)
- **Abundant Methane** (>60 mol%)

Gas is much less biodegraded: Ethane ≤ -30.0
- **Butler/Teal**: -35.2
- **Simpson**: -23.4
- **Dawson**: Not sampled
- **Merryman**: Not sampled
- **Stites**: -33.5
- **Lipsky**: Not sampled
- **Matthews**: -27.2
- **Struths**: -32.0
- **Hurst 14A**: -27.5

Gas is severely biodegraded (excluding Purdue well): Ethane > -24.0
- **Purdue**: -32.0 (Penetrated Strawn)

Values are C Isotopic Composition of Ethane
- i.e., -35.2 (per mil; PDB)
- n.d. = Not Determined (Below detection limit)

A fresh gas plume cannot be migrating through the aquifer from the Butler/Teal wellsite to the Lipsky water well

Methane in Solution Gas Sample
- Trace Methane (<0.5 mol%)
- Minor Methane (≈5-20 mol%)
- Moderate Methane (≈20-40 mol%)
- Abundant Methane (>60 mol%)

Dissolved gas is less biodegraded

Hurst 14A: -27.5
Hurst: -30.1
Stites: -33.5
Lipsky: -23.4
Simpson: n.d.

Gas is much less biodegraded: Ethane ≤ -30.0

Dissolved gas is more biodegraded

Merryman: -16.1
Simpson: -23.6
Butler/Teal: -35.2
Purdue: -32.0 (Penetrated Strawn)

Gas abundance and composition did not change in Purdue, Struths, or Hurst wells

Values are C Isotopic Composition of Ethane i.e., -35.2 (per mil; PDB)

Dawson: Not sampled
Matthews: -27.2
Dissolved gas is less biodegraded

A fresh gas plume cannot be migrating through the aquifer from the Butler/Teal wellsite to the Lipsky water well

A fresh gas plume cannot be migrating through the aquifer from the Butler/Teal wellsite to the Lipsky water well

For contact information, please visit our website: www.weatherfordlabs.com
December 2012: Gas in Merryman, Matthews, and Hurst (14A) Water Wells Is More Biodegraded; Gas in Williams and Wells Water Wells Is Less Biodegraded

Methane in Solution Gas Sample
- Trace Methane (<0.5 mol%)
- Minor Methane (≈5-20 mol%)
- Moderate Methane (≈20-40 mol%)
- Abundant Methane (>60 mol%)

Dissolved gas is more biodegraded than during May

Gas abundance and composition still has not changed

Values are C Isotopic Composition of Ethane
- e.g., -35.2 (per mil; PDB)
- n.d. = Not Determined (Below detection limit)

A fresh gas plume cannot be migrating through the aquifer from the Butler/Teal wellsite to the Lipsky water well

Gas is much less biodegraded: Ethane ≤ -30.0

Gas is severely biodegraded (excluding Purdue well): Ethane > -24.0

Dawson: Not sampled
Matthews: n.d.
Lipsky (Not sampled): n.d.
Struths: -31.8
Hurst 14A: -25.0
Stites: Not sampled
Simpson: -23.1
Merryman: -14.3

Purdue: -32.8
- (Penetrated Strawn)

Butler/Teal: -35.2

-16.3
December 2012: Gas in Merryman, Matthews, and Hurst (14A) Water Wells Is More Biodegraded; Gas in Williams and Wells Water Wells Is Less Biodegraded

Methane in Solution Gas Sample
- Trace Methane (<0.5 mol%)
- Minor Methane (≈5-20 mol%)
- Moderate Methane (≈20-40 mol%)
- Abundant Methane (>60 mol%)

Gas is much less biodegraded: Ethane ≤ -30.0
- Matthews: n.d.
- Now gas is more biodegraded
- Now less gas is dissolved in water

Gas is severely biodegraded (excluding Purdue well): Ethane > -24.0
- Purdue: -32.8 (Penetrated Strawn)
- Gas abundance and composition still has not changed
- Merryman: -14.3
- Simpson: -23.1
- Struths: -31.8
- Wells: -21.9
- Hurst: -30.2
- Gas in Williams and Wells Water Wells Is Less Biodegraded
- Merryman: -14.3
- Simpson: -16.3

Dissolved gas is more biodegraded than during May
- Hanson: n.d.
- Merryman: -14.3
- Simpson: -23.1

Values are C Isotopic Composition of Ethane
- i.e., -35.2 (per mil; PDB)
- n.d. = Not Determined (Below detection limit)

- A fresh gas plume cannot be migrating through the aquifer from the Butler/Teal wellsite to the Lipsky water well

For contact information, please visit our website: www.weatherfordlabs.com
Methane in Solution Gas Sample
- Trace Methane (<0.5 mol%)
- Minor Methane (≈5-20 mol%)
- Moderate Methane (≈20-40 mol%)
- Abundant Methane (>60 mol%)

Values are C Isotopic Composition of Ethane
- i.e., -35.2 (per mil; PDB)
- n.d. = Not Determined (Below detection limit)

Gas is much less biodegraded: Ethane ≤ -30.0

November 2013: The Dawson Well Now Contains Much More Dissolved Gas That Is Less Biodegraded Than During January 2011.

- **Butler/Teal:** -35.2
- **Dawson:** -34.0
- **Lipsky old well (Strawn):** -34.1; C₁/C₂ = 10
- **Lipsky new well (Trinity):** -33.3; C₁/C₂ = 15
- **Purdue:** -32.9
- **Stites:** Not sampled

Butler/Teal wellsite to the Lipsky well

Water samples not collected

Much more gas now dissolved in water

Abundance of methane and C isotopic composition of ethane did not change between January 2011 and November 2013

A fresh gas plume is not migrating through the aquifer

For contact information, please visit our website: www.weatherfordlabs.com
Key Observations and Conclusions

• Moderate to high concentrations of dissolved methane and isotopically-light ethane present in water wells NE and SW of Lipsky residence. Thermal gas in those wells significantly less biodegraded than gas in most water wells between them and Butler/Teal wellpad.

• The gassy water wells form a linear array parallel to the strike of Strawn strata below the unconformity. Fresh gas that migrates periodically from Strawn into the Trinity Aquifer becomes biodegraded.

• Purdue water well drilled into Strawn strata also contains fresh thermal gas.

• Carefully monitor aquifers that contain stray gas to understand its origin and fate.