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Abstract

Although tectonic forcing of stratigraphic architecture in foreland basins is likely, evidence for such forcing is generally circumstantial owing
to limitations imposed by the nature of surface and subsurface geological datasets. Herein, I illustrate two examples from surface exposures of
Cenomanian-Turonian formations in the Cretaceous Western Cordilleran Foreland Basin (WCFB) of Utah and Wyoming that provide
unequivocal evidence of synsedimentary fold growth. Such growth promoted differential subsidence and erosional truncation, facilitating the
formation and preservation of elongate, isolated shelf sandstone bodies. The first example is from the Turonian Ferron Sandstone exposed in
the Henry Mountains Syncline of south-central Utah. A 65 km long, depositional strike-parallel cross-section reveals a synsedimentary fold
with an estimated wavelength of ~70 km and amplitude of at least 50 m, which is truncated by a regional erosion surface. Depositional dip-
oriented outcrops on the flanks of this fold disclose the prominence of laterally discontinuous deltaic sands formed under strong forcing by
repeated relative falls of sea level. The second example is from the Cenomanian-Turonian Frontier Formation in the northern Bighorn Basin,
Wyoming. Here, along a depositional dip-oriented cross-section 35 km long, another synsedimentary fold with at least 35 m relief and a
wavelength of 30 km is evident. Much of the Frontier Formation is incorporated into the fold, and is truncated by a more or less planar erosion
surface in a similar manner to the Ferron Sandstone example. It can be shown that the elongate (digitate) shape of one sandstone member owes
its origin largely to formation under a regime of both spatially and temporally varying accommodation. Both examples illustrate the importance
of tectonic driving forces, likely related to forebulge migration, in the formation and preservation of the Cretaceous stratigraphic record of the
WCFB.
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Frontier Formation outcrop north of Greybull, WY
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OUTLINE OF TALK

IN THIS TALK, | SUMMARIZE RESULTS OF CURRENT RESEARCH
INTO DEPOSITIONAL SYSTEMS OF THE FRONTIER FORMATION IN
NORTHERN WYOMING and FERRON SANDSTONE IN SOUTHERN UTAH,

SHOW HOW SYNSEDIMENTARY STRUCTURAL GROWTH DURING
THE EARLY LATE CRETACEOUS CONTROLLED SEDIMENT BODY
GEOMETRY AND STRATAL STACKING PATTERNS IN THESE TWO UNITS,

AND EXPLORE IMPLICATIONS FOR THE INTERPRETATION
OF ISOLATED SANDSTONE BODIES.




SYNSEDIMENTARY GROWTH STRUCTURES

* FORM IN A VARIETY OF CONTEXTS, BUT

OVERFILLED BASIN

e ARE PARTICULARLY COMMON IN FORELAND BASINS, ~ MIDDLE PENNSYLVANIAN - THRUST FLEXURAL PHASE

* ARE OFTEN RELATED TO FOREBULGE FORMATION.

RECOGNITION OF GROWTH STRUCTURES TYPICALLY
RESULTS FROM STRATAL THINNING AND ONLAP
PATTERNS, EITHER INFERRED FROM SUBSURFACE
DATA, OR VISIBLE IN EXCEPTIONALLY WELL-EXPOSED
OUTCROP CASES.

Eroded thrust front

Forebulge axis

Foredeep Forebulge migrates eastward

S

500 400 300
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Height/Depth(m)

(Diagrams from Tankard, 1986, AAPG Bull., 70, 853-868,
(White et al., 2002, Basin Research, 14, 43-54)




EARLY LATE CRETACEOUS EVOLUTION OF THE
WESTERN CORDILLERAN FORELAND BASIN

Albian/Cenomanian and Turonian paleogeographies by Ron Blakey




A SERIES OF DELTA
COMPLEXES IS BELIEVED
TO HAVE DISPERSED INTO
THE BASIN FROM THE
WEST,

DURING THE CENOMANIAN
AND TURONIAN.

Sevier Coastal/
orogenic alluvial
i highlands ~ plain

(Diagram from Fielding, 2011, Geology, 39, 1107-1110)
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(Diagram from Miall et al., 2008,
In Sedimentary Basins of North America)

STUDY AREAS IN NORTH-CENTRAL WYOMING &
SOUTH-CENTRAL UTAH LAY CLOSE TO THE
INTERPRETED LOCATION OF THE FLEXURAL
FOREBULGE DURING CENOMANIAN AND
TURONIAN TIMES.

CENOMANIAN AND TURONIAN SUCCESSIONS
IN THIS REGION ARE KNOWN FOR PRESERVING
EVIDENCE OF SYNSEDIMENTARY TECTONIC
ACTIVITY.




CASE STUDY 1: FERRON SANDSTONE,
HENRY MOUNTAINS, UTAH

38°30'0"

; /ross-secff ans
of Lj ef ai ’2011a b

Masuk Fm

Campanian

SandyCréek
‘-“”Gprge

Sant.

Blue Gate Shale

P
Salt Lake

y 4
) 3 : | 2} .I
Cross-section

o!Fieldlng, 2011

C
B
o
jov
c
o
O

ol|
o

l":’"
S e e £ «—Blderalt v Y
Ferron Sst _ e Jrf'

Mancos Shale

Tununk Shale

Turonian

Anksville

ral s

Dakota Fm 4 . : - ‘Blitar Creek,

[€e]
()]
Ceno.

(Diagrams from Fielding, 2011, Geology, 39, 1107-1110;
Fielding, in press, Sedimentology)




LOCAL FACIES MODEL FOR THE FERRON SANDSTONE, HENRY MTNS.

Series of modest-size (5-20 km
wide, some laterally
amalgamated), asymmetric,
mixed-influence deltas that
dispersed sediment eastward
into the WCFB.
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(Diagram modified from Fielding, 2010, J. Sed. Res., 80, 455-479)




67 km LONG, DEPOSITIONAL STRIKE-PARALLEL CROSS-SECTION
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DIP TRANSECT STUDY AREA: SOUTH SWAP MESA
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(Diagram from Fielding, in press, Sedimentology)




PERSPECTIVE DIAGRAM AT INTERSECTION OF STRIKE AND DIP TRANSECTS
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GROWTH-FAULTED GULLY FILLS AT SOUTH END OF STRIKE TRANSECT




WESTERN END OF DIP TRANSECT

Mean = 074°
R=0.927
n=16
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NOTE TRACK OF LONGER DIP-ORIENTED CROSS-SECTION,
SHOWN IN FOLLOWING SLIDE

NOTE ALSO PRESENCE OF DELTA FRONT GULLY FILLS (RED)
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CROSS-SECTION SHOWING STRATAL STACKING PATTERNS
AT SOUTH SWAP MESA
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OF SEVERAL SEQUENCES WITHIN THIS INTERVAL.

(Diagram from Fielding, in press, Sedimentology)




DEPOSITIONAL AND STRATIGRAPHIC MODELS TO EXPLAIN THE
DEVELOPMENT OF A SEQUENCE AT SOUTH SWAP MESA

Early Falling Stage Late Falling Stage Lowstand
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DATA FROM LOWER IN THE FERRON SST, A e
MORE DISTAL DELTA FRONT FACIES, :
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EXTENSIVE DEFORMATION AND REPEATED FALLING-STAGE-
DOMINATED SEQUENCES MAY BE DUE TO SUBSURFACE
STRUCTURAL GROWTH
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CASE STUDY 2: BIGHORN BASIN OF WYOMING AND MONTANA
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(Diagram from Fielding et al., 2014, AAPG Bull., 98, 893-909)
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STUDY AREA INCLUDES A NW-SE
TRENDING OUTCROP BELT ALONG
THE FLANK OF SHEEP MTN.
ANTICLINE.

VERTICAL SECTIONS MEASURED AT
INTERVALS, CORRELATED PHYSICALLY
TO ESTABLISH CONTINUITY OF BEDS.

(Diagrams from Hutsky et al., 2012,
Mountain Geologist, 49, 77-98)
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EXPOSURE OF PEAY SANDSTONE MEMBER IN BANK OF BIGHORN RIVER
AT GREYBULL, WY ILLUSTRATES THE FULL PROGRADATIONAL CYCLE

Diagram from Hurd et al., 2014, J. Sed. Res., 84, 1-18




BEDDING STRUCTURE INDICATES IMPORTANCE OF FLUVIAL OUTFLOW, MODEST TIDAL
INFLUENCE, VARIABLE WAVE INFLUENCE. DELTAIC CONTEXT SUPPORTED BY SPORADIC AND
RESTRICTED NATURE OF TRACE ASSEMBLAGE, ABUNDANCE OF PLANT DEBRIS.




LATERALLY EXTENSIVE EXPOSURES REVEAL LOW-ANGLE CLINOFORM
SETS IN MEDIAL-PROXIMAL DELTA FRONT FACIES

Bighorn River bank, Greybull WY

(Diagram from Hutsky et al., 2012, Mountain Geologist, 49, 77-98)
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(Diagram from Fielding et al., 2014, AAPG Bull., 98, 893-909)




A DEPOSITIONAL DIP-ORIENTED CROSS-SECTION SHOWS
THICKNESS CHANGES IN THE PEAY SANDSTONE MEMBER, AND ITS ABRUPT
SOUTHWARD PINCHOUT SOUTH OF GREYBULL, WY.
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(Diagram from Fielding et al., 2014, AAPG Bull., 98, 893-909)




A DEPOSITIONAL STRIKE-ORIENTED CROSS-SECTION SHOWS
THE CHARACTER OF LATERAL PINCHOUTS TO THE PEAY SST MBR.

NOTE THE LACK OF AN INCISED BASE TO THE PEAY, AND THE

MAXIMUM IN THICKNESS OF UNDERLYING STRATA BENEATH
THE AXIS OF THE DELTA BODY.

49-003-20597 70km 49-003-20404 3s5km 49-003-20450

(Diagram from Fielding et al., 2014, AAPG Bull., 98, 893-909)




DEPOSITIONAL MODEL FOR THE NORTHEASTERN
PEAY DELTA FLANK
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(Diagram from Hurd et al., 2014, J. Sed. Res., 84, 1-18)




SUBSURFACE CORRELATION OF SANDSTONE
BODIES ILLUSTRATES LENSOID GEOMETRIES,
COMPENSATIONAL STACKING PATTERN.

NW-SE CROSS-SECTION FROM GREYBULL TOWARDS
THERMOPOLIS, WY
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(Diagram from T. Hurd MS thesis, UNL 2012)




ISOPACH MAPS FOR
A) TOP MOWRY TO BASE PEAY MBR,

B) PEAY MBR,
C) TOP PEAY TO TOP TORCHLIGHT MBR
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NOTE THE LOCATION OF ZONES OF MINIMAL ACCUMULATION

(Diagram from Fielding et al., 2014, AAPG Bull., 98, 893-909)




Sandstone in the dykes is
indistinguishable from that of
the Peay Mbr., margins display
shear fabrics and other evidence
of forceful intrusion.

Many dykes trend 030-040°,
and are somewhat sinuous.

BELOW THE CORE OF THE GROWTH

& ANTICLINE, A SIGNIFICANT NUMBER

- OF SANDSTONE DYKES ARE PRESERVED,
PENETRATING UNDERLYING MUDROCK
UNITS.




THIS MAP SHOWS THE LOCATIONS
AND ORIENTATIONS OF KNOWN
SANDSTONE DYKES.

THE GREATEST CONCENTRATION
OF DYKES COINCIDES WITH THE
LOCATION OF THE SYNSEDIMENTARY =
ANTICLINE SHOWN IN THE :

DEPOSITIONAL DIP CROSS-SECTION.

—_—

Peay Dyke Trends

% n=23
m = 296

(Diagram from Fielding et al., 2014,
AAPG Bull., 98, 893-909)




STRONG COINCIDENCES ARE EVIDENT
AMONG THE TREND AND PLANFORM
GEOMETRY OF PEAY SANDSTONE
MEMBER BODY, SURFACE TRACE OF
RIO THRUST, AND SANDSTONE DYKES
(PERPENDICULAR

TO MAIN S.E. TREND).

(Diagram from Stanton & Erslev, 2002,
WGA Field Conference Guidebook)

A CAUSAL RELATIONSHIP
CAN BE INFERRED.




THE ENIGMATIC CHARACTERISTICS
OF THE P.S.M. ARE EXPLAINED IN
THIS DEPOSITIONAL MODEL.

ACCUMULATION OF THE P.S.M.
WAS FORCED BY BOTH SPATIALLY

AND TEMPORALLY VARIABLE,
LIMITED ACCOMMODATION,

DRIVEN BY STRUCTURAL GROWTH. m

THE SEDIMENT DISPERSAL SYSTEM ")
EXPLOITED ZONES OF GREATER
ACCOMMODATION, BYPASSING
ZONES OF MINIMAL
ACCOMMODATION.

Lovell

(Diagrams from Fielding et al., 2014,
AAPG Bull., 98, 893-909)




THE P.S.M. RESEMBLES LOWSTAND AND FALLING STAGE DELTAIC SYSTEMS, IN THAT IT
EXTENDS A LONG DISTANCE INTO THE BASIN, LACKS A COASTAL PLAIN TOPSET, BUT

IT ALSO LACKS AN INCISED BASE, DOES NOT SHOW A DESCENDING REGRESSIVE
TRAJECTORY, AND PRESERVES A MAXIMUM THICKNESS OF UNDERLYING STRATA BELOW

THE DELTA AXIS.

(Diagram from Fielding et al., 2014,
AAPG Bull., 98, 893-909)
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SYNTHESIS

MANY SANDSTONE
BODIES IN THE K.W.IL.S.
SHOW NORTH-SOUTH
ELONGATION AND/OR
EVIDENCE OF

SOUTHWARD DISPERSAL.

MANY ARE APPARENTLY
ENCASED IN MARINE
MUDROCKS —

“ISOLATED SANDSTONE
BODIES”

(Table from Slingerland & Keen, 1999)

Unit

Depositional Environments and Paleocurrent Data

. Tocito Ss.; northwestern Coniacian
New Mexico (Van

Wagoner, et al., 1991)

Transgressive shelf sand ridge or incised estuarine valley: offshore
unimodal large-scale cross-strata dip to SE; large ipple crests
trend NW-SE; shore parallel sediment transpoj

transgressive restricted shelf or SE transport in a whure parallel

n a

estuary

. Kenilworth Mbr.,
Blackhawk Fm.; Book
Cliffs, Utah (Taylor and
Lovell, 1995)

Campanian

Upper 5I1uretmu ”TFUU}_‘}"I Cross- bed orientations...in the upper

that there were strong shore-p currents.

. Shannon Ss., east-central
Wyoming (Tillman and
Martinsen, 1984)

Campanian

5. Burnstick Mbr., Cardium

6. Virgelle Mbr, Eagle Fm.;

et al.,

. Dunvegan Fm.; Cenomanian
northwestern Alberta
(Bhattacharya and

Wa lrkur,_ 1991)

Shelf ridge complex: “Transport L‘Elru_tmm determined from high-angle
5 sstfransport direction.”

Barrier bar: “A major distributary channel probably fed this barrier
bar at its northeastern end and sand was transported to the

y longshore drift.”

Turonian

Fm.; Alberta (Pattison and

Walker, 1992) —_

Campanian
Bighorn Basin, Wyoming
(Fitzsimmons, 1995)

7. Baytree Mbr., Cardium
Fm.; northwestern Alberta
(Hart and Plint, 1989)

8. Rusty Mbr., Ericson Ss.;
SW Wyoming (Martinsen

1997)

9. Duffy Mtn. Ss.,
Shale; Northwestern
Colorado (Boyles and
Scott, 1982)

Turonian

Campanian

Mancos Campanian

1

1

1

1

3. Hygiene Ss.; northern

0. Eagle Ss.; north-central
Montana (Rice, 1980)

Upper

Cretaceous

Incised shoreface: “We interpret the alongstrike trends as the result of
port In the shoreface.”

ine vallev bipolar N-S dipping trough cross-strata fill a

g, thore parallel, incised valley

Shoreface: “The dominant

‘bedding, in both sandstones and conglomerates indicates a strong
longshore component to sediment transport.”

Valley-fill sandstones: “In contrast to surrounding delta plain
sediments, where paleoflow was to the ESE, the paleocurrents within
valley-fill sandstones ardii
Shore-parallel shelf bars: “ The sediment was probably derived

from....southwestern Wyoming.”

1. Gallop Ss.; northwestern
New Mexico (Campbell,
1971) )

2. Ferron Ss.; Castle Valley,
Utah (Cotter, 1975)

Upper

Cretaceous

Upper
Cretaceous

Colorado (Kitely and
Field, 1984)

Campanian

Low energy coast: “Sediment....was den\ ed from the large Vernal

Delta, located north and west of the Castle Valley outcrops, and was
parallel with the coast.”

Mid-outer shelf sand ridges: “The sand was derived from the west,

transported eastward, and then [redistributed by southward flowing

storm and oceanic currents.”




PUBLISHED EXPLANATIONS FOR APPARENTLY ISOLATED,
NORTH-SOUTH-ELONGATE SANDSTONE BODIES IN THE
WESTERN INTERIOR SEAWAY BASIN INCLUDE

» Mid-shelf bars,

* Tidal sand ridges,

* Falling-Stage nearshore wedges,
» Spit deposits,

 Longshore drift deposits,

* Incised valley fills,

Frontier Fm.,
Bighorn Basin

« AND NOW

 Deflected digitate deltas

Ferron Sandstone,
Henry Mountains




CONCLUSIONS

THE PSM AND FERRON SST WERE DEPOSITED
AS DIGITATE, SOUTHWARD-PROJECTING,
FLUVIALLY-DOMINATED DELTAS.

BOTH MEMBERS SHOW PERSUASIVE EVIDENCE
OF FORCING BY SPATIALLY AND TEMPORALLY
VARIABLE, LIMITED ACCOMMODATION.

THE NATURE OF THE IMPLIED SPATIAL
DISTRIBUTION OF ACCOMMODATION
SUGGESTS THAT THE NOTION OF A SINGLE,
LINEAR FOREBULGE IS PROBABLY UNREALISTIC.

THE DATA AND INTERPRETATIONS PRESENTED
HERE MAY CONSTITUTE A PLAUSIBLE
ALTERNATIVE EXPLANATION FOR SOME
“ISOLATED SANDSTONE BODIES” WITHIN THE
WESTERN CORDILLERAN FORELAND BASIN.

Sevier
orogenic
highlands

Coastal/
alluvial
plain









