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Abstract

The carbonate-rich sediments of the Eocene Green River Formation (53—43 Ma) were deposited in a complex lake system in present-day
Wyoming, Colorado, and Utah during the Laramide orogeny. Although syndepositional tectonic activity has been inferred previously for this
interval, sedimentary deformation features linked to ancient earthquakes have never previously been studied. Stratigraphic intervals with
synsedimentary deformation features were studied at several locations in all the sub-basins to provide information on the paleotectonic history
of the area. Laterally extensive deformed horizons are common in laminated deposits of Fossil Basin (WY), and include folds, water-escape
structures, dikes, microfaults, and chaotically brecciated intervals that preserved flow structures. These indicate hydrofracturing, dewatering,
and the liquified state of sediments during deformation. Sediments deposited in sublittoral environments of the Bridger Basin (WY), at the
boundary between the Tipton Shale and Wilkins Peak members, also show evidence of synsedimentary deformation. These features, some
traceable laterally for tens of kilometers, imply tectonically influenced changes in sedimentary processes during that time. Pervasive
deformation features are also present in the Mahogany Oil Shale Zone in the Piceance Creek and Uinta basins (CO, UT). Behavior ranges from
brittle (fragmented laminites and faulted beds) to plastic (convolution, folds), to cm- to m-scale cracks filled with injected sediment.
Deformation styles were controlled by the rheological properties of the host sediment. Grain size and morphology, abundance of organic matter
(which influences ductility), and degree of diagenesis (compaction, cementation) all, in turn, influenced the deformation structures. All these
structures resulted from increased pore pressures from cyclic loading, and vertical and horizontal stresses induced by ground motion. Mass-
transport deposits, triggered by seismic shaking, contain chaotic deformation features. Typically, undeformed strata separate the deformed
horizons; this indicates that brief (tectonically-driven) events affected only near-surface sediments that were rheologically susceptible to
syndepositional deformation. In many examples, the deformed horizons are overlain by beds showing contrasting lithology and/or degrees of
bioturbation. This implies that many abrupt changes in the Green River Formation were tectonically, rather than climatically, driven.
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3. Tipton Shale - Wilkins Peak Boundary (Bridger Basin, WY)
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Fig. 12. Simplified geological map of the southeastern part of the Greater Green River Basin area (A) and the Bridger Basin,
Wyoming, with the studied locations of outcrops and cores.

3/A ‘Northern’ Deformation Features
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- The boundary of the Tipton Shale and Wilkins Peak Members
Is marked by a sudden change in lithology from oil shale-
dominant lacustrine rocks of the Tipton Shale Member to the
organic-poor and evaporative Wilkins Peak Member.

- The transition is sharp (1-2 m) and easily identifiable across
the study area.

- This sudden facies change was a response to the evolution
of Eocene Lake Gosiute, from the balanced-filled

(Tipton Shale) to underfilled lacustrine conditions (Wilkins
Peak Member) (Carroll & Bohacs, 1999).

- These changes in the lacustrine sedimentation were
(partially) induced by structural movements (Pietras & Carroll,
2000).

- The origin of laterally extensive sedimentary deformation
features has been investigated based on centimetre to
decimetre-scale visual description of outcrops and cores.

- The base of the Wilkins Peak Member contains at least 5
well defined deformed intervals in two coarsening-upward
cycles of sublittoral sandy calcareous siltstone/silty mudstone
deposits.

- Each interval could be traced for more than 20 km in the
northern part of the study area.
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- Deformation structures include various types of folds, ball-
and-pillow structures, microfaults, breccias and sedimentary
dikes, but most commonly deformation is represented by
composite structures.

- Coarsening-upward sedimentary cycles with similar
depositional environment higher in the sections show no
deformation, which indicates an allokinetic trigger.

- Further to the north, at the White Mountain area, deformation
structures could not be observed as a result of facies changes
iInto recessive sediments with a lack of good exposure.

- Deformation (e.g., recumbent folded oil shale beds) were also
found in oil shale, approximately 2 m below the boundary.

- Deformation features at the base of the underfilled Wilkins Peak Member is used to trace the sedimentary

record of structural movements at the time (~51.5 Ma).

- Deformation is not specific to the depositional environment, because deformation was not found in
sedimentary cycles stratigraphically higher, with deposits identical to the ones hosting the deformation

structures.

- Consequently, based on their characteristics and laterally extensive nature, these indicate structural
movement along the nearby uplifts and related fault systems (Rock Springs Uplift, Uinta Fault System).

- As these features also mark the boundary of two distinct stages in the evolution of Lake Gosuite (the
boundary of the balance-filled Tipton Shale Member and the overlying, underfilled Wilkins Peak Member),
they also indicate tectonically driven changes in the lake sedimentation (cf. Pietras & Carroll, 2006).

Fig 13. Lowermost deformed interval at Slipper Jim Canyon with plastic features indicating liquefaction and microfault. B. Lowermost deformed interval at Middle Firehole Canyon, showing complex deformation (fault-related
folds) in a mixed layer; C. Outcrop of the Tipton Shale-Wilkins Peak boundary at Firehole Canyon, with two coarsening-upward cycles; D. Brittle-ductile deformation in the second deformed interval, with thrusts, brecciation
(upper left & lower right), slight folding and sedimentary injections (on the left); E. Convolution and sedimentary injection in calcareaous sandstones interlaminated with silt and mud (Sage Creek section).

'3/B ‘Southern’ Deformation Features (Red Creek Area)

obvious.

downwards) (Fig. 14 A).

- At the Red Creek area, closer to the Uinta Fault system, the Tipton Shale Member is represented by
sediments deposited closer to the former lake margin and the boundary between the two members is less

- Deformation is dominated by sedimentary dikes, ranging in size from a few cm to several m in length.
- Dikes occur as isolated blobs (Fig. 14 B, C) or as long and straight dikes (presumably penetrating

- The infill of the dikes is resistant to weathering as a result of enhanced cementation by silica.

- The infill of the dikes is generally massive silty carbonate mud, or brecciated material of the host rock.
- On the walls of some of the dikes oval-shaped, silicified forms, resembling, microbial build-ups can be
found, indicating an opened fissure at the bottom of the former lake (Fig. 14D).

- The boundary of the two members was placed at the first appearance of extensive and large-scale
sedimenatry dikes in silty mudstone deposits.
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Fig. 14. Sedimentary dikes at Red Creek section: A. Long and straight sedimentary dike with homogeneous silty mudstone infill; B. Isolated crack filled with brecciated material; C. Large isolated crack filled with silicified
brecciated material (Red Creek). Note the smaller horizontal sill on the left; D. Cut surface of dike showed on ‘C’ containing brecciated rim overgrown by microbial-like structures.

4. Washakie Basin (WY) - Laney Member

- Sedimentary dikes identified in the Laney
Member of the Washakie Basin are up to 1.5 m
long and several cm wide.

- They are filled with homogeneous mudstone
or a mixture of fragmented material of mud, silt,
sand, massive or laminated chert, fragments of
lacustrine sedimentary rocks and tuff material.
- The crack-fill is generally silicified, and a
central conduit can be observed, filled with
massive or laminated chert/calcite (Fig. 17B).

- Cracks show moderate sinuosity, branching
(Fig. 16A), multiple fillings, brecciated internal
structure (Fig. 16A), and their overall width
decreases downward and/or upward in the
laminated oil-shales or micritic mudstones.

- In many cases the cracks are represented by
iIsolated bulbs or horizontal sills without a
defined source (Fig. 16B, 17C).

- Dikes are more frequent, and larger in size at
the base of a regional marker bed, the Buff
Marker Bed (Fig. 17A).

- In cores dikes are generally filled with
massive silty mud.

A

Fig. 18. Examples of sedimentary deformation features in the Laney Member from the Blacks Fork 1 core. A. Sedimentary dike _
penetrating downwards filled with massive silty mud; B. Complex sedimentary injection feature; C. Soft-sediment deformed oil as burrow structu res, scour features or rip-up
shale and massive silty mud; D. Massive silty mudstone bed showing isolated sedimentary dike and upward-protruding top.
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Fig. 16. Characteristics of sedimentary dikes in laminated lime mudstone deposits of the Laney Member, Washakie Basin,
Wyoming: A. Sample with multiple filling indicating more than one fluidization event (TD); B. Dike filled with carbonate mud

and silt. Note the thin analcime-tuff layer with long cracks (SB).

Fig. 17. Characteristics of sedimentary dikes in organic-rich and lean laminated
lime mudstone deposits of the Laney Member, Washakie Basin: A. Dike at the
base of the Buff Marker Bed filled with fragmented material showing multiple
filling (AC); B. Dike with a central conduit filled with laminated chert; C.
Weathered dike (sill) indicates intrastratal, horizontal injection (SB).

- Rhodes et al. (2007) interpreted these cracks
at the base of the Buff Marker Bed as the result
of desiccation that occurred after a regional
tectonic event which caused the modification of
the regional drainage system. However, the
morphology and the infill of the cracks (with a
central conduit) indicate fluid migration and
sediment remobilization.

- The morphological characteristics of the dikes
related to the Buff Marker Bed are similar to the
ones, found in several other stratigraphic

levels in the Laney Member; this suggests

a common, seismic origin.

- Sedimentary dikes and other deformation
structures identified in cores were previously
not recognized, or misinterpreted (for example,

layers).
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5. Mahogany Oil Shale Zone - Uinta Basin (UT)

- Pervasive deformation features were investigated across the
Uinta and Piceance Creek basins in the Mahogany Oil Shale
Zone (MOSZ), a 20-30-m thick extensive stratigraphic marker,
zone, which contains several organic rich shale beds.

- Deformation structures have been identified both in cores
and outcrops.

- Deformation style ranges from brittle (fragmented laminites
and faulted beds) to plastic (convolution, folding), with
sedimentary injection into cm- to m-scale dikes.

- The style of deformation was governed by the rheological
properties of the sediment.

- Their great lateral extent and confinement to a thin (20-30 m),
well-defined stratigraphic level indicate a regional tectonic event,
which caused dewatering, hydrofracturing and slope instability/
slumping at different parts of the basin.

Fig 19. Studied locations of the Mahogany Qil Shale Zone and major fault zones of the Uinta and
Piceance Creek basins (NE Utah and NW Colorado).

" Fig. 21. Sedimentary injections in sublittoral silty lime mudstones showing multiple fluidization events and hydrofracturing,
5/A I n d Ian CanyO n (UT) Indian Canyon. B. Fragmentation and upward bending of the sediments indicate upward fluid movement.
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- At Indian Canyon deformation is dominated by sedimentary dikes-.-
- Extensional joints and oriented injection features indicate E-W extension; sheared

-
=

L 1 beds showed N/NNE movement/compression.
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Fig 20. Outcrop of the MOSZ at Indian Canyon along Hwy 191. Two prominent Fig. 22. Sedimentary injections ("dewatering structures”), filled with carbonate mud, in profundal, rich oil shales;
deformation zones are marked with red boxes. Indian Canyon, Utah. Injections form bulbous oriented dikes and irregular sills, many times isolated.
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- Deformation features are characterized
by horizons with mud-filled carbonate
injection ("dewatering structures”) in the
oil- shales (Fig. 23B). 0.1-2m long
cracks filled with silicified carbonate mud
and silt also occur (Fig. 23A).

- Sheared oil shale (the Mahogany bed),
showing en-echelon fabric, shear-related
propagation folds, kink and sheath folds,
shear duplexes and thrusting (Fig. 23C).
g e = - = 1 - Small scale oriented cracks and the

-_ %j ¥ " " W shear fabric indicate top to left (North)

o | el shear/compression and perpendicular

N (UT) Gate Canyon

Fig 23. Deformation structures at Gate Canyon: A. Sedimentary dike filled with siliceous carbonate mudstone and (~ 1 70) extension, with extensional joints
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Fig 24. A-C. Sedimentary injection features at
North Franks C. (dikes and sills) filled with

siltstone in laminated lime mudstone; B. “Dewatering structures” in oil shale; C. Sheared fabric in the Mahogany Bed. (stri ke ~1 20)

TR
. - T

silicified mudstone.

North Franks Canyon

- Deformation structures are dominated by remobilized non-calcareous/silicified
mudstones at multiple detachment surfaces, forming large- and small-scale
dikes and sills 0-3 m below the Mahogany Bed (Fig. 24).

— Sheared layers within the interval indicate N-ward displacement, while small
duplexes within the dikes show S-ward movement.

- N-S-oriented joints and oriented small-scale “shrinkage-cracks” or “syneresis
cracks” in silty mudstone deposits in the succession indicate E-W extension.
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5/C. Sand Wash

- At Sand Wash the Mahogany Oil Shale Zone hosts a 4-10-m thick chaotic
interval with complex deformation features, showing characteristics of a
mass transport complex (MTC).

- The interval has a sharp, erosional lower boundary on the top of
horizontally bedded lake sediments, with smaller scale deformations and
silicified sedimentary injections (up to 3 m long).

- The source of these irregular dikes, either the base of the MTC or
horizons within the slightly deformed lake sediments. At many places a
distinct, oil-rich shale bed forms the basal boundary (e.g., 2), which is in
turn brecciated or disrupted by the MTC.

- Internally the MTC shows two distinct lithofacies: (a) sandy-silty matrix,
with sand-/silt-/mudstone and oil shale clasts, or (b) massive/laminated,
blocky brown-dark brown siliceous mudstone with clasts of oil shale. In
both cases chaotic deformation, sheared fabric, or large-scale recumbent
folded intervals are general.

- Large, sometimes tilted rafts of brecciated oil shale can be found at the
top of the MTC. This upper oil shale is considered to be the Mahogany Bed.
- In places it seems continuous and intact; however, even at those places it
shows brecciation and small-scale disruption. Locally it is overlain by
irregular, lens-shaped lacustrine succession and/or orange tuff layer (e.g.,
1, 3), mixed with organic-rich and lean oil shale and tuffaceous sediments,
showing plastic deformation and brecciation.

- This upper succession is overlain by undeformed (ledge-forming) wavy-
bedded tuffaceous sand- and siltstone.

- The MTC indicates a large-scale slumping event and the instability of
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L .+ IFig, 30. A. Brecciated oil shale above
s, .. . “lsoft-sediment deformed oil shale (Shell X-23
- ¥ .| Core); B. Sedimentary dike in oil shale (Shell
- 3 | 23-X core), filled with silty carbonate mud
" | containing evaporite crystals (?); C. Deformed
- | oil shale with plastic (folds) and brittle (thrus
| faults) structures (Savage 24-1 core); D.
| Brecciated oil shale with intraclasts showing
i{sheared structure (Savage 24-1 core); E.
h. Deformed oil shale with a folded interval
| underlain by chaotically deformed part that
| shows sediment remobilization (Colorado1
core); F. Chaotically folded oil shale, with
small-scale tight folds (Colorado 1 core).

" erosive front and

| 5 - "'m dlsrupted Iayers

b
o

it BRSO . ; = _ . - b S *i_’,,' SES
13. Tilted rafts of the Mahogany Bed(?) on the top of MTC 14. Dlsruptlon of lacustrine beds by MTC deposrts 15. Steeply dipping interval at the base of the MTC.

5/D. Eastern Utah (Evacuation Creek Canyon; HeIIs HoIe Canyon)

Evacuation Creek Canyon

- Study of MOSZ in the box cut of the Enefit American Oill

- ~1.5 m below the Mahogany Bed, an irregular horizon, with en-echelon shear

structures shear-related folding, and thrusting.

N . - e ai g s -1 - Thickness of the deformed interval is variable and

wav uit g deformation dies out quickly in a NE-SW direction.
"+ - Thickness changes in the overlying beds might

= = indicate deposition controlled by lake-floor

A R -';m morphology after deformation/ slump event.
“ee 107 - Structures indicate shear towards SW(~230).

6. Deformed contact between the Uinta and Green River Formations In E-Uinta Basin

rofundal to sublittoral sediments. 5 "‘- N T — Large-scale sandstone blocks, foundered into deformed or undeformed — In places the blocks are separated by large diapirs of lacustrine sediments.
P [ “:.. ;h1eot025o?r,:;]éh|'\(/igﬁ:e:r:edBZ%nerazfg © fouhncsi rcr)tnlar R S lacustrine sediments in the eastern Uinta Basin, form an irregular upper - At other places the boundary marked by large-scale liquidization (ball-and-
T P J yh ed (Fig ) Wé ICI S —— s —_—— e = boundary of the Green River Formation (Fig. 31). pillow) structures (Fig. 31 C) and hydroplaning (Fig. 31 D).
ig 25. Location o th studie ara,norheast of Nine il Gamyon | g structures and stratigraphic position as at Gate s s b e o o ionosmns bt mn e[|~ The sand blocks are intact or plasticallydeformed, with sharp, erosive - Deformation/shear siructures indicate a S-ward displacement of the exoi
a0 fhe locatlon oTpholos preseniedbeio -- - | - T lower boundary (e.g., Fig. 31A). sandstone blocks due to seismicity along the Douglas Creek Arch.
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Flg 27 A NE wall of the box cut W|th the |rregular deformed interval dlvrded by an undeformed zone and the sheared Iayer iIn the Mahogany Bed. Beds 1 and 2 change their thlckness
towards the SW; B. Sheared zone at the base of the deformed interval, with thrust-related folding above (NW wall); C. En-echelon structure in the sheared layer of the Mahogany Bed.

Hells Hole Canyon — Injection features occur in the vicinity of a ~15-cm thick tuff, containing
—— = G | - e A Al W TS A T N A g — Al — Several well defined, horizontally persistent and traceable brecciated shale, and silt/sand lithoclasts.
J,_L @ I i LA e TG R T ST e SR A and/or plastically deformed horizons. — Injection features, the brecciation and the presence of lithoclasts
| e | M b S . . s gl e e i - Deformed horizons over- and underlain by non-/ or less deformed, indicate dewatering of a fluid-saturated, reworked tuff material. i
laminated lake deposits. — Sheath folds show WSW (~245) compression.

large-scale ball-and-pillow
structures (Fig. 23 C)

deformed front and erosrve Iower
contact of the gllded block :

3 ) . 1w }
|u' R F .
== 1T5 | L I |
e g = w " —ry i .
3 5 ‘!" 'y " s I.!. .'Tﬂ! A “ 'l';.' i y '...' \ i i
Il e ﬁl‘:— mﬁhl“ . I-I:::' e J ;.‘t‘ e - 4} i
o | DT i © Hﬂf K5

Fig. 31. A. Large-scale crossbedded sandstone block with angular lower contact, above the laminated silty lime mudstones of the Green River Formation; B. Sandstone blocks on the top of lacustrine mudstone deposits.
The lower blocks show plastic deformation and bending of the original bedding. The upper blocks are imbricated and divided by dome-like intrusions of the sandy lime mudstone or by shear planes; C. Large-scale
ball-and-pillow structures, near Watson; D. Outcrop shows the hydroplaning and fluidization of semilithified, glided sandstone block.

fluidized sand formed by
water entrainment
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/. Conclusions

— Pervasive horizons of seismically induced deformation structures were identified in the lacustrine sediments of the Eocene Green River Formation
— Deformation is represented by brittle and plastic behavior, as well as sediment injection and mass transport.
— The deformed layers in the profundal setting are confined by undeformed beds which implies sporadic short-lived events that affected only near-surface

= i sediments with susceptible rheological state at the time.
Fig 28. Deformed horizons at Hells Hole Canyon: A. Brecciated oil shale bed with recumbent folded intraclast(?) at the top; B. Brecciated and folded oil shale bed with sigma structures; C. Brecciation and Injection B B_ased on (1) the tectonic Settmg of the I_aCUStrme basins; (2) th_e _Sedlmentary en\_”ronment and Sed|m.ent0|09|?a| Charaoterlst|c_s.of the SUCCeSS-IOnS 1
at the base and top of a tuff layer (Mahogany Marker?). Note the mixing of the oil shale and tuff material on the top of the tuff. which the deformed layers occur; (3) their lateral extent and proximity to known active fault systems during the time of the deposition of host sediments; and

(4) their recurrence at different stratigraphic levels, intervals showing large-scale sedimentary deformation structures are the result of in-situ loss of shear
strength (without or without the role of gravity), formed by increased pore pressure and vertical or horizontal stress induced by seismic activity.

— Features previously described as the result of desiccation are reinterpreted as seismically induced sedimentary deformation and/or fluid flow.

— Silicified sedimentary injection features ("dewatering structures”) indicate segregation of fine grained sediments, dewatering and remobilization. These
features also acted as conduits of silica-rich brines.

— Mass transport complexes formed due to seismicity induced instability of the sediments on Upifs
a flat or very gently dipping depositional slope (Buchheim, 1994; Dyni, 1981). 28
— Features in the MOSZ indicate a basin-wide tectonic event.

- These features can provide information about the location and timing of the tectonic | |,.........
movements in the lake sub-basins. Clearly, synsedimentary deformation is an important but | "~
hitherto neglected aspect of the petroleum geology of the Green River Formation.

5/E. Piceance Creek Basin (CO)

— Contorted "breccias", disrupted bedding or "blebby" oil shale beds ranging from a few centimetres to 11-m
thick, are common features near the depocentre of the Piceance Creek basin.

— Johnson (1981) and Tanavsuu-Milkeviciene & Sarg (2012) identified and correlated soft-sediment deformed
(slumped) or brecciated individual oil shale beds over several square kilometers in the northern, tectonically
active part of the basin, along with other deformation structures, such as "dewatering” structures and
intraformational conglomerate beds.

— Deformed beds have sharp upper/lower boundaries and are over- and underlain by undeformed sediments.
— Such features have been studied at the Roan Cliffs and in cores.

- Brecciated beds contain faulted, folded, tilted or imbricated et 1 T = S - A T
clasts of laminated oil shales (intraolasts) or massive mudstone = s b e | 7 Fig. 32. Proposed concept illustrating the origin of mass movement deposits and other sedimentary deformation
or siliciclastic clasts. which are roating in the matrix features, triggered by earthquakes (depositional model modified after Tanavsuu- Milkeviciene and Sarg, 2012) O e
- Sheared fabric is common, and beds can be associated with S— g subora A o IPAS Micobialcaborales fEJS“Qifas‘ff*li'ei’r‘i'rfzﬁ{iefm-me.;. o
sedimentary dikes above or below. | FA2: Shoreline sandstones EA%, (Ve thAOtiNE ol ok Shai FA92: Oil shale breccias
. -y . . Bradley, W.H., 1964. The geology of the Green River Formation and associated Eocene rocks in southwestern WWyoming and adjacent parts of Colorado and Utah. U.S. Geological Survey Professional Paper, 496-A, 86 p. - FA3: Carbonate Elhﬂa|5 Profundal Fﬁu_ _ m-I FA10: Siliciclastic mrbldltes
_ G rad I ng IS nOt appa rent and the CIaStS are random Iy d IStrI buted . Buchheim, H.P., 1994. Paleoenvironments, lithofacies and varves of the Fossil Butte Member of the Eocene Green River Formation, southwestern Wyoming. University of Wyoming, Contributions to Geology, 30, 3—14. FA4: Delta deposits FA8: Laminated oil shale FA11: Subaqueous evaporites

Buchheim, H.P., and Eugster, H.P., 1998. Eocene Fossil Lake: The Green River Formation of Fossil Basin, southwestern Wyoming. In: Pitman, J.K., and Carroll, A.R. (Eds.), Modern and ancient lake systems. Utah Geological Survey
Guidebook 26, pp. 191-207.
Buchheim, H.P., Cushman R.A. and Biaggi, R.E., 2011. Stratigraphic revision of the Green River Formation in Fossil Basin, Wyoming. Rocky Mountain Geology, 46, p. 165 — 181.

— The origin of these sediments were interpreted as slumps,
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