Stratigraphic Control on the Lateral Distribution of Hydrothermal Dolomites away from Major Fault Zones: Part 2*

G. Michael Grammer¹, J.E. Thornton², M.R. Robinson³, P.J. Feutz⁴, J.E. Schulz⁵, and W.B. Harrison⁶

Search and Discovery Article #50964 (2014)**
Posted May 30, 2014

*Adapted from an oral presentation given at Tulsa Geological Survey dinner meeting, May 5, 2014.
Please refer to Search and Discovery Article #50277 (2010) for Part 1 of this composite article by Dr. Grammer and his co-workers.
**AAPG©2014 Serial rights given by author. For all other rights contact author directly.

¹Boone Pickens School of Geology, Oklahoma State University, Stillwater, OK (michael.grammer@okstate.edu)
²Shell Exploration and Production Company, Houston, TX
³Devon Energy Corporation, Oklahoma City, OK
⁴Zavanna LLC, Denver, CO
⁵Occidental Oil and Gas Corporation, Houston, TX
⁶Western Michigan University, Kalamazoo, MI

Abstract

Hydrothermal dolomite (HTD) reservoirs are well known as prolific hydrocarbon producers in many parts of the world. In almost all cases, exploration strategies focus on the seismic expression of a sag related to Reidel shear along basement-rooted faults, with the general model being that reservoir-quality dolomites are centered near the fault zones. When evaluating many of the published examples of these reservoirs in detail, however, it appears that there is a secondary control on the lateral development of reservoir-quality rock away from the major fault zones. Detailed core-based analysis of HTD reservoirs in the Albion-Scipio trend of the southern Michigan Basin suggests that the lateral development of reservoir quality away from the faults is due to combination of primary facies and the sequence stratigraphic framework.

Production in the Albion-Scipio trend has exceeded 125 MMBO since the mid-1950’s, and there have been over 20 new discoveries around the trend in the past few years. Exploration methods continue to be centered on seismic sags observed in 3-D seismic surveys, but the initial development and subsequent enhanced production of these reservoirs will require more detailed geological interpretation to avoid the close step-out dry holes often associated with these types of reservoirs. Detailed evaluation...
of some 30 cores in the Albion-Scipio trend indicates that reservoir-quality dolomitization moves laterally away from the major fault planes in the transgressive portions of probable 4th order high-frequency sequences. Reservoir quality is best developed in highly bioturbated, open ramp wackestones to packstones where the burrow galleries have been differentially filled with coarser-grained sediment due likely to storm deposition (i.e., tubular tempestites). The Thalassinoides-type burrows have been preferentially dolomitized with coarsely crystalline sucrosic dolomite, resulting in high permeable pore networks that are distributed in 3 dimensions throughout the depositional facies. Isotopic and fluid-inclusion analyses support the interpretation of the dolomitizing fluids being related to the major, fault-centered HTD events. Understanding of how HTD fluids can migrate laterally along preferential facies or stratigraphic intervals should aid in the development of production and enhanced-production strategies for these types of reservoirs.

Selected References

Poe, M.C., and J.F. Read, 1997, High-resolution surface and subsurface sequence stratigraphy of Middle to Late Ordovician (Late Mohawkian to Cincinnatian) foreland basin rocks, Kentucky and Virginia: AAPG Bulletin, v. 81, p. 1866-1893.

Stratigraphic Control on the Lateral Distribution of Hydrothermal Dolomites away from Major Fault Zones

G. Michael Grammer
Chesapeake Energy Chair of Petroleum Geology
Oklahoma State University

J. E. Thornton1, M.R. Robinson2, P.J. Feutz3,
J.E. Schulz4, W.B. Harrison5
1Shell Exploration and Production; 2Devon Energy
3Zavanna LLC; 4Occidental Oil and Gas
5Western Michigan University
Hydrothermal Dolomite (HTD)

“dolomite and associated minerals and fabrics formed as a result of introduction or flow of a subsurface fluid that has higher temperature than the ambient temperature of the host rock”………..G.K. Davies (2000)

from White (1957)

“aqueous solutions that are warm or hot relative to the surrounding environment”
Saddle (baroque) Dolomite

Ordovician (T/BR) Michigan Basin

200 µm
Hydrothermal Dolomite Reservoirs are often Very Productive
Examples of Hydrothermal Dolomite Reservoirs (estimated reserves)

1. Western Canada Sedimentary Basin (WCSB) - Devonian
 30 TCF

2. Lima Trend of Ohio and Indiana (Ordovician)
 > 500 MMBO and 2 TCF

3. Albion-Scipio Trend (Ordovician, Michigan)
 > 150 MMBO

4. Ontario (Ordovician)
 23 MMBO and 42 BCF

5. Ghawar Field (Jurassic, Saudi Arabia)
 55 billion barrels est. cumulative production
Hydrothermal Dolomite Mineralization

- High T, P Mg-bearing fluids migrate from underlying aquifers vertically along fault conduits
- Local dolomitization of host limestone enhances ϕ, K

Davies and Smith, 2006
THERMOBARIC DOLOMITE: EMBLACEMENT CONTROLS

[DEVONIAN SETTING]

TOP SHALE SEAL / AQUIFARD

THERMOBARIC FLUID SOURCE

EXTENSIONAL FAULTS

WRENCH FAULTS

‘BASEMENT’

ZEBRA FABRICS

EPISODIC, HIGH-RATE HYDROTHERMAL FLUID FLOW

UP FAULTS

BASEMENT HIGH/ARCH

BASAL SST AQUIFER

LEACHED LST ("COOL EFFLUENT")

METHANE GAS PHASE CHANGE AT 500 m DEPTH

Graham Davies model for HTD in Devonian of Western Canada
Albion-Scipio Trend

- Discovered in 1957
- Production: >147 MMBO, 260 BCF (A-S)
- 30 mi (50 km) x 1 mi (1.6 km)
- Developed on 20 acre spacing
- Trend development based primarily on structural sag mapping
- New fields (since 2006) produced over 4 MMBO
Discovery: Albion – Scipio Field

January 7, 1957
Discovery well
Perry #1 Houseknecht
On the advice of “Ma” Zulah Larkin

Scipio Starts the Boom Days Again!

Map: Hurley and Budros, 1990
Photo: Westbrook, 1993

Slide courtesy of Robb Gillespie
Seismic “sag” and negative flower structures (Ord., Michigan)
Dolomite (HTD) distribution in Albion-Scipio

Fundamental Questions

1. What controls lateral variability of HTD away from faults?
2. What are the depositional geometries and facies distributions in the Trenton and Black River Groups?
Lateral Distribution of HTD in Albion Scipio

Dip vs. Strike
Lateral continuity

Grammer et al. (2014)
Wapta Mt. (British Columbia)

Photo courtesy of G. Davies
Wapta Mt. (British Columbia)

Photo courtesy of G. Davies
Geologic Background

- Middle Ordovician—Mohawkian
- Humid sub-tropical, ~25° Lat.
- Epeiric carbonate platform (ramp)
- Volcanic ash from Taconic orogeny

Modified from Ives, 1960; and Catacosinos et al., 1990
Geologic Background

<table>
<thead>
<tr>
<th>Period</th>
<th>Epoch</th>
<th>North American Series</th>
<th>Subsurface Nomenclature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Late</td>
<td></td>
<td>Cincinnatian</td>
<td>Utica Shale</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Middle</td>
<td>Mohawkian</td>
<td>Black River Group</td>
<td>Trenton Group</td>
</tr>
<tr>
<td>Chazyan</td>
<td></td>
<td>Glenwood Shale</td>
<td></td>
</tr>
</tbody>
</table>

Modified from Catacosinos et al., 2000

TBR Type-Log

Series: M4, M5A, M5B, M5C, M6A, M6B, M6C, C1
Stage: Kirk, Rock, T., Shermanian
Sequences: MI Basin
Trenton Group
Utica Shale
Black River Group
Glenwood Fm.
St. Peter Ss.

Coastal Onlap
Sea level

Modified from Brett et al., 2004
Modified from Pope and Read, 1997
Core Data Depositional Environment & Facies Models

Refined Facies Models

K-bentonite Reconstructions

Facies Analysis and Stratigraphic Model

Synthesis Model

Petrophysical Data
Core Description

- Study included detailed analysis of 20 cores (>2700 linear feet)
- Lithology, Dunham texture, sedimentary structures, grain type, pore types and pore architecture tied to permeability and sonic log velocity.
Core Data Depositional Environment & Facies Models

Refined Facies Models

Facies Analysis and Stratigraphic Model

K-bentonite Reconstructions

Synthesis Model

Petrophysical Data
Depositional environments and facies associations of TBR interval as a whole

Defined by texture, grain type and abundance, and sedimentary structures

General framework for examining and modeling TBR deposits
Burrowed Facies - Primary stratigraphic reservoir

Scale in centimeters
Repeated burrowing and filling of burrows with coarse-grained sediment produces 3-D network of high porosity and high permeability

Shinn, 1983
Great Bahama Bank

Modern Analog

Potential for extensive aerial distribution of facies

125 km
Differential cementation in burrowed facies
Burrowed facies apparent in image logs (resistivity)
Thin Shales/K-bentonites as permeability baffles/barriers?

Porous HTD pooled directly beneath a thin seam of ‘clay’.
Thin Shales/K-bentonites as permeability baffles/barriers?

X-section of five Rice Creek wells all exhibiting pooled dolomite beneath the same gamma ray spike. All produce hydrocarbons from the dolomitic interval.

‘E’ Shale from Stoney Point Field correlates to thin baffles in Rice Creek Field.
Dolomite Beneath Thin ‘Shale’

- 2-3 centimeter thick ‘shale’
- 43 wt% carbonate, 35 wt% K-feldspar, 9 wt% clay, 7 wt% quartz
- 4 foot interval of dolomite
- Dolomitized facies with porosity in burrows as well as surrounding matrix.
Multiple Dolomite Intervals Beneath Thin ‘Shales’

- 46 wt% clay, 5 wt% carbonates, 32 wt% K-feldspar, 6 wt% quartz
- 4 foot dolomite interval below

- 19 wt% clay, 39 wt% carbonates, 29 wt% K-feldspar, 5% quartz
- 20 foot dolomite interval below

Dolomite interval terminates downward into a calcite-cemented skeletal grainstone
HTD Model showing influence of thin “shale” stringers
Core Data Depositional Environment & Facies Models

Refined Facies Models

K-bentonite Reconstructions

Facies Analysis and Stratigraphic Model

Synthesis Model

Petrophysical Data
K-bentonite Facies Reconstructions

Cross-section scales

10 ft 1 mi
10 m 1 km

Inner-Mid Ramp Dominant Facies
Mid-Outer Ramp Dominant Facies

Inner-Mid Ramp Dominant Facies
Mid-Outer Ramp Dominant Facies
Modern Depositional Analog: Great Pearl Bank, Persian Gulf

- Arid carbonate shoal-ramp
- Strike elongate facies geometries:
 - foreshoal
 - shoal
 - shoal-protected/restricted lagoon
 - peritidal and tidal flat
- Heterogeneous facies distributions

Strong similarities between modern GPB and TBR facies types, geometries, and distributions
K-bentonite Facies Reconstructions

A. Black River Shale

- Facies:
 #beneath/#above

- Isolated highs

B. E-Shale

- Facies:
 #beneath/#above

- Isolated highs
Core Data Depositional Environment & Facies Models

Refined Facies Models

Facies Analysis and Stratigraphic Model

K-bentonite Reconstructions

Synthesis Model

Petrophysical Data
Stratigraphic Framework

Scales

Large

Small

HF
Sequence Stratigraphic Control on HTD Reservoirs

Summary:

- HTD (Φ, K) distribution is controlled by primary fabric and depositional geometries (lateral) in addition to structural surfaces (vertical).
Sequence Stratigraphic Control on HTD Reservoirs

Summary:

- HTD (Φ, K) distribution is controlled by **primary fabric** and **depositional geometries** (lateral) in addition to structural surfaces (vertical).
Summary - Key Points

1. Vertical distribution of HTD is concentrated along fault corridors

2. Lateral distribution of HTD can be attributed to:
 - Primary depositional facies
 - *Thallassinoides*-type burrowed facies are preferentially dolomitized increasing reservoir quality
 - Improved reservoir quality was observed in association with probable 4th order high frequency sequences
 - Local permeability barriers (vertical)

3. Facies mosaic (depositional model) and sequence framework enhance potential development (especially horizontal and multi-laterals)

4. Facies control on heterogeneity – whole core vs. plug analysis: Things to think about!