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Abstract

Hydrothermal dolomite (HTD) reservoirs are well known as prolific hydrocarbon producers in many parts of the world. In
almost all cases, exploration strategies focus on the seismic expression of a sag related to Reidel shear along basement-rooted
faults, with the general model being that reservoir-quality dolomites are centered near the fault zones. When evaluating many of
the published examples of these reservoirs in detail, however, it appears that there is a secondary control on the lateral
development of reservoir-quality rock away from the major fault zones. Detailed core-based analysis of HTD reservoirs in the
Albion-Scipio trend of the southern Michigan Basin suggests that the lateral development of reservoir quality away from the
faults is due to combination of primary facies and the sequence stratigraphic framework.

Production in the Albion-Scipio trend has exceeded 125 MMBO since the mid-1950’s, and there have been over 20 new
discoveries around the trend in the past few years. Exploration methods continue to be centered on seismic sags observed in 3-D
seismic surveys, but the initial development and subsequent enhanced production of these reservoirs will require more detailed
geological interpretation to avoid the close step-out dry holes often associated with these types of reservoirs. Detailed evaluation


http://www.searchanddiscovery.com/documents/2010/50277grammer/ndx_grammer.pdf
mailto:michael.grammer@okstate.edu

of some 30 cores in the Albion-Scipio trend indicates that reservoir-quality dolomitization moves laterally away from the major
fault planes in the transgressive portions of probable 4™ order high-frequency sequences. Reservoir quality is best developed in
highly bioturbated, open ramp wackestones to packstones where the burrow galleries have been differentially filled with
coarser-grained sediment due likely to storm deposition (i.e., tubular tempestites). The Thalassinoides-type burrows have been
preferentially dolomitized with coarsely crystalline sucrosic dolomite, resulting in high permeable pore networks that are
distributed in 3 dimensions throughout the depositional facies. Isotopic and fluid-inclusion analyses support the interpretation of
the dolomitizing fluids being related to the major, fault-centered HTD events. Understanding of how HTD fluids can migrate
laterally along preferential facies or stratigraphic intervals should aid in the development of production and enhanced-production
strategies for these types of reservoirs.
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Hydrothermal Dolomite (HTD)

“dolomite and associated minerals and fabrics formed as
a result of introduction or flow of a subsurface fluid that
has higher temperature than the ambient temperature of
the host rock” ........... G.K. Davies (2000)

from White (1957)

“aqueous solutions that are warm or hot relative to the
surrounding environment”
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Saddle (b_gr_oque) Dolomite
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Hydrothermal Dolomite Reservoirs
are often Very Productive




Examples of Hydrothermal Dolomite Reservoirs
(estimated reserves)

. Western Canada Sedimentary Basin (WCSB) - Devonian
30 TCF

. Lima Trend of Ohio and Indiana (Ordovician)
> 500 MMBO and 2 TCF

. Albion-Scipio Trend (Ordovician, Michigan)
> 150 MMBO

. Ontario (Ordovician)
23 MMBO and 42 BCF

. Ghawar Field (Jurassic, Saudi Arabia)
55 billion barrels est. cumulative production



Hydrothermal Dolomite Mineralization

®PROD/POT. HTD RESERVOIRS

OHTD IN OUTCROP
. & i

Davies and Smith, 2006

* High T, P Mg-bearing fluids migrate from underlying
aquifers vertically along fault conduits

» Local dolomitization of host limestone enhances ¢, K



THERMOBARIC DOLOMITE : EMPLACEMENT CONTROLS
[DEVONIAN SETTING]
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Discovery: Albion — Scipio Field
January 7, 1957
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Seismic “sag” and negative flower structures (Ord., Michigan)
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Modified from Hurley & Budros, 1990

) HOT FLUIDS

Fundamental Questions

1. What controls lateral variability of HTD away from faults?
2. What are the depositional geometries and facies distributions
in the Trenton and Black River Groups?



Lateral Distribution of HTD in Albion Scipio
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Geologic Background

PC
c
o
S
D
M
P
J

 Middle Ordovician—Mohawkian
* Humid sub-tropical, ~25° Lat.
» Epeiric carbonate platform

(ramp)
* Volcanic ash from Taconic
orogeny

Deicke K-Bentonite
Distribution




Geologic Background
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Depositional Environment
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Core Description

« Study included detailed analysis of 20 cores (> 2700 linear feet)

« Lithology, Dunham texture, sedimentary structures, grain type, pore types
and pore architecture tied to permeability and sonic log velocity.
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» Depositional environments and facies associations of TBR interval as a whole

« Defined by texture, grain type and abundance, and sedimentary structures

» General framework for examining and modeling TBR deposits



Burrowed Facies - Primary
stratigraphic reservoir

Scale in centimeters




Callianassa burrows and “tubular tempestites”

A

Modified after Tedesco and Wanless, 1991

Repeated burrowing and filling of
burrows with coarse-grained
sediment produces 3-D network of
high porosity and high permeability

& Shinn, 1983
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Differential cementation in burrowed facies
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Thin Shales/K-bentonites as permeablllty
baffles/barriers?
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Thin Shales/K-bentonites as Arco-Conklin 1-31 Well

Trenton

permeability baffles/barrigrs? —
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Dolomite Beneath Thin ‘Shale’

«2-3 centimeter thick ‘shale’

*43 wt% carbonate, 35 wt% K-
feldspar, 9 wt% clay, 7 wt%
quartz

*4 foot interval of dolomite

*Dolomitized facies with porosity
in burrows as well as surrounding
matrix.

Permit #22381
Hillsdale County

Mann 6

Limestone

Dolomite

Shale

Limestone;
mudstone-

wackestone
Porosity: ~0.01%

| Dolomite;
| burrow-mottled
mudstone-

'wackestone
Porosity: ~3%

Dolomite;
burrow-mottled
mudstone-

wackestone
Porosity: ~2.9%

Limestone;
skeletal

grainstone
Porosity: ~0%




Multiple Dolomite Intervals Beneath Thin ‘Shales’

*46 wt% clay, 5 wt%
carbonates, 32 wt% K-
feldspar, 6 wt% quartz

*4 foot dolomite interval
below

*19 wt% clay, 39 wt%
carbonates, 29 wt% K-
feldspar, 5% quartz

+20 foot dolomite interval
below

Limestone; mud lean

packstone-grainstone
Porosity: ~0%

grainstone
Porosity: ~0%

Whitaker2
Permit #28407
Hillsdale County

Dolomite; packstone
Porosity: ~1,5%

*

7unln-wﬁ

el
AR, o L. £

Dolomite; skeletal grainstone
Porosity: ~5%

Dolomite interval terminates

cemented skeletal grainstone




HTD Model showing influence of thin
“shale” stringers
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Depositional Environment
& Facies Models

Synthesis Model

basin center ——-




K-bentonite Facies Reconstructions
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Modern Depositional Analog:
Great Pearl Bank, Persian Gulf

: Great Pearl Bank Barrier
' M Trucial Coast Persian Gulf ru_

SSSSS

Modified from Wagner a n der Togt (1973) and Wilkinson and Drummond (2004)

 Arid carbonate shoal-ramp

» Strike elongate facies geometries: = foreshoal = shoal
= shoal-protected/restricted lagoon
= peritidal and tidal flat

» Heterogeneous facies distributions

**Strong similarities between modern GPB and TBR facies types, geometries, and
distributions



Surface Location
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K-bentonite Facies Reconstructions
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Sequence Stratigraphic Control on HTD
Reservoirs

Approximate scale I1 m

1km

Sumary:

— HTD (®, K) distribution is controlled by primary
fabric and depositional geometries (lateral) in
addition to structural surfaces (vertical).




Sequence Stratigraphic Control on HTD
Reservoirs
i conral_p

vertical baffle

reservoir

| Approximate scale I1 m

1km

- Summary:
— HTD (®, K) distribution is controlled by primary

fabric and depositional geometries (lateral) in
addition to structural surfaces (vertical).




Summary - Key Points

1. Vertical distribution of HTD is concentrated along fault
corridors

2. Lateral distribution of HTD can be attributed to:

— Primary depositional facies

— Thallassinoides-type burrowed facies are preferentially
dolomitized increasing reservoir quality

— Improved reservoir quality was observed in association with
probable 4t order high frequency sequences

— Local permeability barriers (vertical)

3. Facies mosaic (depositional model) and sequence
framework enhance potential development (especially
horizontal and multi-laterals)

4. Facies control on heterogeneity — whole core vs. plug
analysis: Things to think about!
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