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Abstract

Petrographic and SEM, along with RockEval pyrolysis analyses were used to constrain the nature of organic material (OM) that contains
porosity in the Cenomanian-Turonian Eagle Ford Formation, South Texas, where the formation is in the oil/condensate window (Ro ~1.2%).
Samples used were from a well that contained intervals of both 1) foraminiferal mudstones with high (up to 8 wt%) total organic carbon (TOC)
contents, deposited within the trangressive system tract (TST) or near maximum flooding surface (MFS) intervals, and 2) limestones with
relatively lower TOC (<1 up to 6 wt%) contents, deposited largely in the overlying high stand systems (HST) track interval.

In mudstones, early diagenetic processes resulted in precipitation of euhedral-subhedral authigenic minerals (e.g., calcite, pyrite, kaolinite) that
filled foraminifera and coccosphere tests (intraparticle pores) and partially filled interparticle pores between other detrital grains. In limestones,
recrystallization of bioclastic material resulted in euhedral-subhedral microsparry calcite crystals between remaining interparticle pores. In both
lithologies, OM coats the euhedral-subhedral minerals and locally fills intraparticle and interparticle pores, but this superposition relationship is
particularly well developed in mudstones whereas OM is less common in limestones. Pores in the OM range in size from <0.1 pm to ~1 pm
across, and are variably round, elliptical, or irregularly shaped. For both lithologies, OM was clearly emplaced after authigenic mineral
precipitation, and porosity development subsequent to its emplacement. For TOC-rich mudstones in the TST, RockEval pyrograms generated
on the same samples before and after solvent extraction indicate the presence of a relatively greater amount of extractable phase (i.e., bitumen),
observed as a shoulder on the S2 peak of the pyrogram. In contrast, the TOC-lean limestones from the HST contain a relatively lower amount
of the extractable phase (S2 shoulder) and a greater amount of "free" hydrocarbons measured as the S1 peak from Rock-Eval relative to the
TOC-rich mudstones.

Given its inferred mobility and relative post-depositional timing of emplacement, the OM that coats authigenic minerals is presumed to be the
bitumen identified from RockEval analyses. As such, organic porosity in the Eagle Ford appears to be spatially linked to the dispersal of
bitumen, whereas free hydrocarbons appear to be lithologically controlled.
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Sequence stratigraphic framework

Eagle Ford, near Del Rio, TX
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Petrologic goals for porosity studies

Place inorganic & organic porosity development within a temporal
framework for lithologies of interest (organic-rich mudst & Is)
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Organic-rich mudstones, intraparticle
pores (primary porosity) within foram.
Foram filled with authigenic kaolinite
(K), pyrite (P), & organic material (O)
as well as 'spongy’ organic pores

-

Recrystallized Is, interparticle pores
B! (secondary porosity through diagenesis)
® between authigenic calcite (C) & pyrite
(P) crystals. Interparticle pores also
referred fo as ‘pendular’ pores




~Authigenic kaolinite (K), pyrite (P),
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Authigenic pyrite (P), quartz (Q), calcite (C),
Kaolinite (K), & 'migrabitumen’ (M)—
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Integrating petrology & RockEval

Org-rich, foraminiferal TST mudstone
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less so in limestones
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Summary of petrology/RockEval

* Pore type varies by lithology
» OM pores dominate in org-rich mudstones
» 'Pendular’ pores largely in limestones
 Organic porosity developed in ‘migrabitumen’
> Mobile phase that moved into previously water-wet pores
> Introduced after ppt of various authigenic minerals

Organic-rich mudstone Recrystallized limestone
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Pairing diagenesis with catagenesis

Original detrital
grains + biogenic
material
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Influences of lithology on production

Lithologic (sequence strat) controls on pore types?
Pendular in limestones vs spongy in mudstones iz
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From John Guthrie and Randy Mitchell

Moveable HC in low TOC Is with 'higher’ perm
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Conclusions

* Inorganic & organic pores—important storage for HC
 Porosity development—diagenesis (inorganic) & catagenesis (organic)
 Early diagenesis (water-wet) in organic-rich TST/MFS mudstones
o Ppt of pyrite, kaolinite, calcite, etc. in intfraparticle pores
 Early diagenesis (water wet) in HST limestones
o Ppt of calcite, quartz, pyrite, kaolinite, etc in interparticle pores
 Migrabitumen (oil-wet) related to early HC generation
o Observed as shoulder on S2 peaks, RockEval pyrograms
o Mobile phase that coats previously formed authigenic minerals
o Post-dates diagenesis in both mudstones & limestones
* Organic pores (‘'spongy’) formed in migrabitumen
 'Pendular’ pores—just interparticle pores in Is
 Organic porosity spatially related to dispersal of ‘'migrabitumen’
* Moveable HC in higher perm. limestones



Acknowledgments

Hess Corp. for permission to present results





