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Abstract 

 

Some recent publications promote one-run, open-system pyrolysis experiments using a single heating rate (ramp) and fixed frequency factor to 

determine the petroleum generation kinetics of source rock samples because they are faster, less expensive, and presumably yield results 

similar to those from multiple-ramp experiments. The purpose of this work is to compare the efficiency of various combinations of open-

system pyrolysis heating rates to determine the kinetics of petroleum generation. Pyromat II® open-system micropyrolysis experiments were 

conducted on a large number of drill cuttings samples from a worldwide collection of source rocks at one or more of the following heating 

rates: 1, 3, 5, 10, 30, and 50°C/min. The resulting pyrolyzate peaks were processed using Kinetics05® software to derive chemical rate models. 

Although some one-ramp pyrolysis experiments using a fixed frequency factor of 1 × 10
14

sec
-1

 indeed yield kinetic results similar to those from 

multiple-ramp experiments using floating frequency factors, the data illustrate that one-ramp kinetics are generally unreliable. The precision of 

kinetic results, as measured by calculated temperatures at 10, 30, and 90% transformation ratio, increases with the number of pyrolysis heating 

ramps in the range 1 to 50°C/min. However, the accuracy of these temperature predictions is unclear. The data show that kinetic results based 

on three different pyrolysis temperature ramps closely approximate those determined from six runs, provided that that the three temperature 

ramps span an appropriate range of heating rates. However, temperature ramps of 30 and 50°C/min appear to be too fast to obtain a good 

kinetic fit because of delayed heat transfer between the thermocouple and the sample. At least three pyrolysis ramps are recommended, such as 

1, 3, and 10°C/min or 1, 3, 5, and 10°C/min. Delayed heat transfer between the thermocouple and sample may even affect these comparatively 

slow heating rate experiments. These conclusions do not address the more fundamental question as to whether discrete kinetic models based on 

open-system pyrolysis are sufficiently accurate for use in basin simulators. 
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Petroleum Generation Kinetics: 
Single- Versus Multiple-Heating 
Ramp Open-System Pyrolysis 
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“Discrete Activation Energy Models”: One Frequency Factor 

Laboratory Pyrolysis Geologic Conditions Optimization 
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A = 1 x 1014 sec-1 

k = Ae-E
a
/RT 

k = Arrhenius rate constant (kerogen to oil and gas ) 

A = frequency factor (e.g., vibrational frequency of bonds broken) 

Ea = activation energy, R = gas constant, T = temperature 



Recent Papers Recommend “Single-Ramp Kinetics” 

• Single-ramp kinetics (Waples et al., 2002, 2010), Waples 

and Nowaczewski (2014) use a fixed, universal A. 

• Single-ramp is faster and cheaper than multiple-ramp 

kinetics and can be used on archived pyrolysis data.  

• Multiple-ramp kinetics optimize both Ea and A: Pyromat II® 

ramps = 1, 3, 5, 10, 30, and 50oC/min  

 



Purpose of the Kinetic Study 

• Compare reliability of various combinations of open-

system pyrolysis ramps to determine the kinetics of 

petroleum generation for 52 global source rocks. 

• Is single-ramp kinetics using a fixed A (1 x 1014 sec-1) 

more reliable than multiple-ramp kinetics where both Ea 

and A are optimized? 

Pyromat II® Micropyrolysis 

Laboratory Pyrolysis 
Geologic Conditions 

Kinetics05® 

Software 
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1) Are there real differences in frequency factors (A) for 

petroleum generation from kerogen in source rocks? 

2) Are the differences in A large enough to significantly 

impact extrapolation of temperatures to geologic 

conditions (e.g., at different transformation ratios)? 

3) What experimental conditions are required to answer 

questions 1 and 2? 

Assessment of Single-Ramp Kinetics Involves Three Factors 



k = Ae-E
a
/RT 

Log A – Log Aref = (Ea – Eref)/2.303RT 

Arrhenius Equation Expressed Relative to Reference Values 

k1 = A1e
-E

1 
/RT k2 = A2e

-E
2
/RT 

Pick T so that k1 = k2 

A1e
-E

1 
/RT= A2e

-E
2 
/RT 

Ln A1/A2 = (E1 – E2)/RT 
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Fixed A Introduces Error in Geologic T Extrapolation (~20oC) 

Range A for 52 kerogens = 1012 to 1016 sec-1  

Assume a fixed A of 1 x 1014 sec-1 

 

1014/1012 = 100 

Log2100 = 6.65 (i.e., A doubles 6.65 times) 

6.65 x 3oC/my ~ 20oC error  

1-2-3 Rule: 1 kcal/mol error doubles A and yields 

~3oC error in geologic extrapolation of temperature 
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52 Samples Were Analyzed by Pyromat II® Micropyrolysis 



Tmax, 
oC 

Mean Ea, 
kcal/mole 

Temp oC 
at 10% TR 

Temp oC 
at 50% TR 

Temp oC 
at 90% TR 

Average 449.3 53.54 112.0 137.3 163.7 
Minimum 447.8 52.97 105.2 135.8 160.4 
Maximum 452.1 53.87 115.0 138.4 168.2 
Std. Dev. 1.3 0.28 2.3 0.8 2.2 

Geologic Extrapolation 

Assuming 3oC/my 

16 Single-Ramp Replicates Give ‘Best’ Ea of ±0.28 Kcal/mole 

Bellagio Road outcrop (type II) 

Afixed = 1 x 1014 sec-1 

TR = transformation ratio (extent of conversion of kerogen to petroleum) 



Fixed vs. Optimized A: Offset of Ea by Compensation Law 
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Single- and Multi-Ramp Models Yield Different Temperatures 
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Heating-Rate Ratio (Rr) = Maximum / Minimum Ramp  

• Pyromat II® Ramps = 1, 3, 5, 10, 30, and 50oC/min  

• Therefore, Rr of 1 is a single-ramp experiment (fixed A). 

• Rr of 50 consists of all 50/1 multi-ramp experiments 

(optimized A): 
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Single- vs. Multi-Ramp: Wide vs. Narrow Deviation in Ea 
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Variation in Ea Becomes Small for Heating-Rate Ratios >16 
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Differing A and Ea are Real and Not Measurement Artifacts 
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Kimmeridge Clay: Predicted T at Transformation Ratio (TR) 
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Conclusions (I) 

• Single-ramp pyrolysis can yield kinetic results that are 

inconsistent with those from multiple-ramp experiments. 

• Frequency factors for 52 global source rocks are 

statistically distinct within measurement uncertainty and 

vary over four orders of magnitude (1012 to 1016 sec-1). 

• Assuming a universal value for A erroneously presumes 

that temperature measurements do not have sufficient 

accuracy for reliable kinetics. 

• Adoption of fixed A of 1 x 1014 sec-1 can result in error in 

geologic temperature extrapolation of up to ~20oC. 



Conclusions (II) 

• Pyrolysis ramps of 30-50oC/min can be too fast for good 

kinetic fit because of thermal lag; minimize sample and 

thermocouple size, optimize thermocouple orientation. 

• Heating rate x sample size should be <100mgoC/min. 

• 20- to 30-fold variation in heating rate using at least three 

ramps is recommended (e.g., 1, 5, 25oC/min or 1, 3,10, 

25oC/min) with replicates at highest and lowest rates. 

• Neither single- nor multiple- ramp discrete Ea distribution 

models are reliable for kerogens with narrow Ea ranges 

where nucleation-growth models are needed. 
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