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Abstract 

 

The past ten years, we have developed a number of petrophysical models for specific requirements: rock physics modeling 

create pseudo acoustic (both compressional and shear) curves, based on Gassmann and Krief geophysical models. The model 

allows for the estimate of acoustic data where no (or limited) acoustic data exists. From this modeling, mechanical properties 

can be made (Holmes et al., 2005a,b). Relative permeability modeling profiles of irreducible water saturation are compared 

with the actual water saturation (Holmes, 2009). Using the technique of Corey (1954) continuous profiles of relative and 

effective permabilities to both fluid phases can be created. Knowing viscosities of reservoir fluids water/hydrocarbon can be 

determined as continuous curves. Petrophysical Analysis of Unconventional Reservoirs Involves examination of the shale 

intervals independently of the clean formation. Additionally consideration of the total organic carbon (TOC) content of the 

reservoir is required. Quantitative calculations of free and adsorbed hydrocarbons need to be assessed for a complete analysis 

(Holmes et al., 2010, 2011, 2013). A technique (unpublished) to identify fractures was developed to estimate the presence of 

fractures, both open and healed-from standard open hole logs. Anonymously rapid rates of change with depth are attributed to 

fractures. If the trend is to higher porosity, open fractures are suggested. This paper presents how these various models can be 

combined including porosity, fluid saturation, shale volume, permeability, in-place and recoverable hydrocarbons, free 

hydrocarbons in the shale fraction, TOC and adsorbed hydrocarbons, profiles of relative and effective permabilities to the fluid 

phases, profile of water/hydrocarbon ratios, and brittle vs. ductile distinction. Examples from unconventional oil and gas 

reservoirs of North America are presented and include Niobrara, Bakken (oil), Western Canada, Barnett and Utica (gas). 
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Outline

� Introduction

□ Conventional and Unconventional reservoir 

petrophysical models

� Procedures

1. Standard shaley formation petrophysical model

2. Unconventional reservoir petrophysical model

■ Four porosity components model

■ TOC calculations

■ Standard vs. shale only density/neutron comparisons 

■ Free and adsorbed hydrocarbons



Outline
� Procedures Cont. 

3. Fracture analysis

4. Relative permeability model

5. Rock physics model and mechanical properties –

brittle vs. ductile

6. Comprehensive petrophysical model

� Examples

□ Niobrara, Colorado

□ Barnett Shale, Texas

□ Antrim Shale, Michigan

□ Shale Gas, Western Canada

□ Bakken, Montana

□ Tight Gas, Colorado



Introduction

� Conventional vs. unconventional reservoir 

petrophysical models

ShaleMatrix Effective Porosity

Water Oil/Gas

The Reservoir

Conventional Reservoirs
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Procedures

□ In the following discussions an example from the 

Niobrara (Colorado) is used to illustrate procedures



Procedures 1  – Standard Shaley Formation Analysis 
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Procedure 2 – Unconventional 

Reservoir Petrophysical Model 

� The goal is to calculate the four porosity 

components from the unconventional reservoir 

model

□ Effective Porosity Phi�

□ Total Organic Carbon TOC

□ Clay Porosity Phi����

□ Free Shale Porosity Phi��

Four Porosity Component Model

TOC 

Phi Components

Phiee PhiFSFS

PhiClayClay
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TOC Calculation

� TOC Passey et al
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TOC Calculation

� TOC Schmoker

� Schmoker has three 

different correlations of 

RhoB with TOC

� Schmoker high 

Appalachian correlation

� Schmoker low 

Appalachian correlation 

� Schmoker Williston Basin 
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Standard vs. Shale Only 

Density/Neutron Cross Plots
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Standard vs. Shale Oil Density/Neutron 

Cross Plots

Calculate

Clay Porosity = Cross Plot Porosity X VSH
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Phie Vs. Free Available Porosity 
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Free vs. Adsorbed Hydrocarbons

� Free hydrocarbons are 

located in the free available 

porosity element, and are 

calculated using standard 

approaches

� Publications on calculating 

adsorbed hydrocarbon 

volumes are sparse.  Empirical 

relations are: 

Gas – Published Relation 

Adsorbed G.I.P. (SCF) = 1359.7 X Area X Thickness X RhoB X (16 X TOC)

Oil – Suggested Relation

Adsorbed O.I.P. (Bbl) = S2 X 0.0007 X RhoB X h X Area X 7758

S2 = Hydrocarbons generated by thermal cracking
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Procedure 2 – Unconventional Reservoir 

Petrophysical Model
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Procedure 3 – Fracture Analysis 

1
:4

8
0

 M
D

 in
 ft

Sonic

DT

140 40US/F

DT DS

140 40US/F

Frac.

O

C

Density

RhoB

1 2

2 3G/C3

RhoB DS

1 2

2 3G/C3

Frac.

O

C

Neutron

NPhiL

1.05 0.45

0.45 –0.15V/V

NPhiL DS

1.05 0.45

0.45 –0.15V/V

Frac.

O

C

Grain Density

RHOCMA

2 3G/C3

RhoCMA DS

2 3G/C3

Frac

O

C

Grain Travel Time

DTCMA

140 40US/F

DTCMA DS

140 40US/F

Frac

O

C

Fractures

Open

Frac Open

0 4unkn

Open

Closed

Frac Cement

0 –4unkn

Closed

6650

6675

6700

6725

6750

6775

6800

6825

6850

6875

6900

6925

6950

69756975

Niobrara A

Niobrara B

Niobrara C

Ft Hays

Codell

Carlile

Graneros

Individual Log Responses Stacked DataPink O = Open Fractures – ? Low stress

Blue C = Closed Fractures – ? High stess



Procedure 4 – Relative Permeability 

Model

� Solve the Corey relation

□ S#� $
�%	'	�%(

)	'	�%(

□ K+# $ S#�
, Water

□ K+- $ 1 / S#�
0 1 / S#�

0 Hydrocarbons

0.01 0.1 1

Active Filter: VSH < 0.75

Effective Porosity-PHIE

0
.0

1
0

.1
1

W
a

te
r 

S
a

tu
ra

ti
o

n
 -

 E
ff

e
ct

iv
e

 

Intercept: 0.002
Slope: 1.743

Reservoir

�1 2 �1�

�1

�1�

Buckles Relation 

Phie X S#3 $ Constant

Holmes Adaptation 

Phie8 9 S#3 $ Constant

Slope = Q



Relative 

Permeability 

Example
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Relative 

Permeability 

Example 
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Procedure 5 – Rock Physics Model and 

Mechanical Properties – Brittle vs. Ductile

� To calculate mechanical properties, the 

following measurements are required

□ Acoustic compressional

□ Acoustic shear

□ Density 

� Often acoustic shear is not available but can be 

estimated from other logs.  The example shows 

pseudo curves based on the Krief geophysical 

model (Dipole Sonic not run in the Niobrara 

example).  

Dipole Sonic



Rock Physics Model and Mechanical 

Properties

1
:6

0
0

 M
D

 in
 ft

Resistivities

Deep

–100 300unkn

Medium

–50 150OHMM

Shallow

0.2 2000OHMM

Density/Neutron

RhoB DS

1.8 2.8G/C3

Density Correction

–0.75 0.25G/C3

NPhiLDS

0.45 –0.15V/V

DT DS

200 30US/F

Implied Gas Effect

Pseudo Acoustic-Comp

DT DS

200 30US/F

KF DTP WETO

200 30us/ft

KF DTP 800

200 30us/ft

Ratios

KF DTS DTP WETO

1 5ratio

KF DTS DTP 800

1 5ratio

Pseudo Acoustic-Shear

DT Shear

350 50[N/A]

KF DTS WETO

350 50us/ft

KF DTS 800

350 50us/ft

Pseudo Density

RhoB DS

2 3G/C3

FS RhoB WETO

2 3g/cc

FS RhoB 800

2 3g/cc

Pseudo Neutron

PhiN

0.6 0V/V

FS NPhi WETO

0.6 0v/v

FS NPhi 800

0.6 0v/v

6
6

5
0

6
7

0
0

6
7

5
0

6
8

0
0

6
8

5
0

6
9

0
0

6
9

5
0

7
0

0
0

7
0

5
0

Niobrara A

Niobrara B

Niobrara C

Niobrara A

Niobrara B

Niobrara C

Raw Log DT DTS/DT DTS Density Neutron



Young’s Modules vs. Poisson’s Ratio
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Procedure 6 – Comprehensive Petrophysical Model

Saturations
Swt (Dual Water)

1 0V/V

So, Flushed Zone

0 1V/V

So, Univaded Zone

0 1V/V

Core Water Saturation

1 0V/V

Core Oil Saturation

0 1V/V

Moved Hydrocarbons

Unmoved Oil

Moved Oil

 Gas

Bulk Volumes
Total Por.

0.3 0V/V

Effective Por.

0.3 0V/V

CP Bound Water

0.3 0v/v

Matrix Water

0.3 0v/v

CORE_PHI_RAW_US

0.3 0%

Hydrocarbons

Free Water or Poor Q

CP Bound Water

1
:1

0
0
0
 M

D
 in

 ft

Lithology
Rhoma vs Uma v2

Quartz

Calcite

Dolomite

Illite

K-Feldspar

0 1

Permeability
Air Perm - Log

0.00001 10MD

Core Permeability

0.00001 10md

Clean

Gross: Vsh only

Net: Vsh & Phi

Pay: Vsh, Phi & Sw

GS

NS

Pay

Shale

GS

NS

Pay

Water Oil Ratio
WOR

0 1unkn

D/B

–1 1

Fractures
Open Closed

Porosity Types
PHIE

0 0.2V/V
DF_SHALE_POROSITY

0.2 0v/v

Porosity Types
DF_FREE_SHALE_POROSITY

0 0.1v/v
TOC_ADJ_VOLUME

0.1 0v/v

CORE_TOC_US

10 0g/cc

6
6
5
0

6
7
0
0

6
7
5
0

Gross: Vsh only

Net: Vsh & Phi

Pay: Vsh, Phi & Sw

Niobrara A

1            2                   3           4          5     6         7       8         9           10          11

1. Fluid Saturation 4. Permeability 7. Water/Oil Ratio – Oil Reservoirs

Water Bbl per MMCF – Gas Reservoir

10. Porosity Types – Phie and shale 

porosity 

2. Bulk Volume – non

shale fraction

5. Pay Flag – Clean Formation

Yellow = Gross “Sand”

Red = Net “Sand”

Green = Pay

8. Estimates of Fractures 11. Porosity Types – Free Shale Porosity 

and TOC

3. Lithology 6. Pay Flag – Shale 

Yellow = Gross “Sand”

Red = Net “Sand”

Green = Pay

9. Fractures

A Standard Template is Used for All Examples



Niobrara, Colorado – Oil 
Saturations

Swt (Dual Water)

1 0V/V

So, Flushed Zone

0 1V/V

So, Univaded Zone

0 1V/V

Core Water Saturation

1 0V/V

Core Oil Saturation

0 1V/V

Moved Hydrocarbons

Unmoved Oil

Moved Oil

 Gas

Bulk Volumes
Total Por.

0.3 0V/V

Effective Por.

0.3 0V/V

CP Bound Water

0.3 0v/v

Matrix Water

0.3 0v/v

CORE_PHI_RAW_US

0.3 0%

Hydrocarbons

Free Water or Poor Q

CP Bound Water

1
:1

0
0
0
 M

D
 in

 ft

Lithology
Rhoma vs Uma v2

Quartz

Calcite

Dolomite

Illite

K-Feldspar

0 1

Permeability
Air Perm - Log

0.00001 10MD

Core Permeability

0.00001 10md

Clean

Gross: Vsh only

Net: Vsh & Phi

Pay: Vsh, Phi & Sw

GS

NS

Pay

Shale

GS

NS

Pay

Water Oil Ratio
WOR

0 1unkn

D/B

–1 1

Fractures
Open Closed

Porosity Types
PHIE

0 0.2V/V
DF_SHALE_POROSITY

0.2 0v/v

Porosity Types
DF_FREE_SHALE_POROSITY

0 0.1v/v
TOC_ADJ_VOLUME

0.1 0v/v

CORE_TOC_US

10 0g/cc

6
6
5
0

6
7
0

0
6

7
5

0
6

8
0

0
6

8
5

0
6
9
0

0
6
9
5

0
7
0
0

0
7
0
0

0

Gross: Vsh only

Net: Vsh & Phi

Pay: Vsh, Phi & Sw

Niobrara A

Niobrara B

Niobrara C

Ft Hays

Codell

Carlile

Graneros

Greenhorn

Fractures in 

Niobrara C/Ft. 

Hays

Variable free 

shale porosity 

Niobrara 

benches are 

brittle

Niobrara shales

are ductile

Very little shale 

contribution

Fair to good core/log 

Correlation



Bakken, Montana – Oil 
Saturations

Swt (Dual Water)

1 0v/v

So, Flushed Zone

0 1v/v

So, Univaded Zone

0 1v/v

Core Water Saturation

1 0unkn

Core Oil Saturation

0 1unkn

Moved Hydrocarbons

Unmoved Oil

Moved Oil

 Gas

Bulk Volumes
Total Por.

0.3 0v/v

Effective Por.

0.3 0v/v

CP Bound Water

0.3 0v/v

Matrix Water

0.3 0v/v

CORE_PHI_RAW_US

0.3 0unkn

Hydrocarbons

Free Water or Poor Q

CP Bound Water

1
:4

8
0

 M
D

 in
 ft

Lithology
Rhoma vs Uma v2

Quartz

Calcite

Dolomite

Illite

K-Feldspar

0 1

Permeability
Air Perm - Log

0.00001 10mD

Core Permeability

0.00001 10md

Clean

Gross: Vsh only

Net: Vsh & Phi

Pay: Vsh, Phi & Sw

GS

NS

Pay

Shale

GS

NS

Pay

Water Oil Ratio
WOR

0 1unkn

Comp.

Oil

Wet

Tight

Shale

D/B

–1 1

Fractures
Open Closed

Porosity Types
PHIE

0 0.2v/v
DF_SHALE_POROSITY

0.2 0v/v

Porosity Types
DF_FREE_SHALE_POROSITY

0 0.1v/v
TOC_ADJ_VOLUME

0.1 0v/v

CORE_TOC

10 0[N/A]

1
0
3

7
5

1
0
4

0
0

1
0
4

2
5

1
0
4

5
0

1
0
4

7
5

1
0
5

0
0

1
0
5

2
5

1
0
5

5
0

1
0
5

7
5

1
0
5

7
5

Gross: Vsh only

Net: Vsh & Phi

Pay: Vsh, Phi & Sw

Bakken

Top Bakken Shale

Base Bakken Shale

Three Forks

Nisku

Very high TOC

Water production from 

lower Three Forks

High free shale 

porosity 



Barnett, Texas – Shale Gas 
Saturations

Swt (Dual Water)

1 0V/V

So, Flushed Zone

0 1V/V

So, Univaded Zone

0 1V/V

Core Water Saturation

1 0unkn

Moved Hydrocarbons

Unmoved Oil

Moved Oil

 Gas

Bulk Volumes
Total Por.

0.3 0V/V

Effective Por.

0.3 0V/V

CP Bound Water

0.3 0v/v

Matrix Water

0.3 0v/v

CORE_PHI

0.3 0unkn

Hydrocarbons

Free Water or Poor Q

CP Bound Water

1
:4

8
0
 M

D
 in

 ft

Lithology
Rhoma vs Uma v2

Quartz

Calcite

Dolomite

Illite

K-Feldspar

0 1

Permeability
Air Perm - Log

0.00001 10MD

Clean

Gross: Vsh only

Net: Vsh & Phi

Pay: Vsh, Phi & Sw

GS

NS

Pay

Shale

GS

NS

Pay

 BW per MMscfg

WATER_BBLS

1 100000unkn

Comp.

Oil

Wet

Tight

Shale

D/B

–1 1

Fractures
Open Closed

Porosity Types
PHIE

0 0.2V/V
DF_SHALE_POROSITY

0.2 0v/v

Porosity Types
DF_FREE_SHALE_POROSITY

0 0.2v/v
TOC_ADJ_VOLUME

0.2 0v/v

CORE_TOC

20 0unkn

8
5
2
5

8
5
5
0

8
5
7
5

8
6
0

0
8
6
2
5

8
6
5
0

8
6
7
5

8
7
0
0

8
7
0
0

Gross: Vsh only

Net: Vsh & Phi

Pay: Vsh, Phi & Sw

Zone02

Zone03

No free shale 

porosity 

Shales show variable 

ductile/brittle 

responses

Good correlation core/logs

High free shale 

porosity



Antrim, Michigan – Shale Gas
Saturations

Swt (Dual Water)

1 0V/V

So, Flushed Zone

0 1V/V

So, Univaded Zone

0 1V/V

Core Water Saturation

1 0Frac

Core Oil Saturation

0 1unkn

Moved Hydrocarbons

Unmoved Oil

Moved Oil

 Gas

Bulk Volumes
Total Por.

0.3 0V/V

Effective Por.

0.3 0V/V

CP Bound Water

0.3 0v/v

Matrix Water

0.3 0v/v

Core Phi

0.3 0Frac

Hydrocarbons

Free Water or Poor Q

CP Bound Water

1
:6

0
0
 M

D
 in

 ft

Lithology
Rhoma vs Uma v2

Quartz

Calcite

Dolomite

Illite

K-Feldspar

0 1

Permeability
Air Perm - Log

0.00001 10MD

Clean

Gross: Vsh only

Net: Vsh & Phi

Pay: Vsh, Phi & Sw

GS

NS

Pay

Shale

GS

NS

Pay

 BW per MMscfg

WATER_BBLS

1 100000unkn

Comp.

Oil

Wet

Tight

Shale

D/B

–1 1

Fractures
Open Closed

Porosity Types
PhiE

0 0.2V/V
Shale Porosity

0.2 0v/v

Porosity Types
Free Shale Porosity

0 0.2v/v
TOC ADJ Vol

0.2 0v/v

Core TOC

20 0g/cc

1
5
0

0
1
5
5
0

1
6
0

0
1
6
5
0

1
7
0
0

1
7
5

0
1

7
5

0

Gross: Vsh only

Net: Vsh & Phi

Pay: Vsh, Phi & Sw

Zone01

Zone02

Zone03

Zone04

Zone05

Pay contribution from 

most of the shales

High TOC 

and free 

shale 

porosity

Shale shows variable 

brittle/ductile responses

Fractures 

sporadic

Good correlation core/logs



Western Canada – Shale Gas
Saturations

Swt (Dual Water)

1 0V/V

So, Flushed Zone

0 1V/V

So, Univaded Zone

0 1V/V

Moved Hydrocarbons

Unmoved Oil

Moved Oil

 Gas

Bulk Volumes
Total Por.

0.3 0V/V

Effective Por.

0.3 0V/V

CP Bound Water

0.3 0v/v

Matrix Water

0.3 0v/v

Core Phi

0.3 0V/V

Hydrocarbons

Free Water or Poor Q

CP Bound Water

1
:1

0
0

0
 M

D
 in

 m

Lithology
Rhoma vs Uma v2

Quartz

Calcite

Dolomite

Illite

K-Feldspar

0 1

Permeability
Air Perm - Log

0.00001 10MD

Core Permeability

0.00001 10unkn

Clean

Gross: Vsh only

Net: Vsh & Phi

Pay: Vsh, Phi & Sw

GS

NS

Pay

Shale

GS

NS

Pay

 BW per MMscfg

WATER_BBLS

1 100000unkn

Comp.

Oil

Wet

Tight

Shale

D/B

–1 1

Fractures
Open Closed

Porosity Types
PhiE

0 0.2V/V
Shale Porosity

0.2 0v/v

Porosity Types
Free Shale Porosity

0 0.2v/v
TOC ADJ Vol

0.2 0v/v

Core TOC

20 0g/cc

2
3
0

0
2

3
5

0
2

4
0

0
2

4
5

0

Gross: Vsh only

Net: Vsh & Phi

Pay: Vsh, Phi & Sw

Zone #6

Zone #7

Zone #8

Good correlation core/logs

Major contribution from shales

Shales are entirely brittle

High values of free 

shale porosity 



Piceance Basin, Colorado – Tight Gas
Saturations

Swt (Dual Water)

1 0V/V

So, Flushed Zone

0 1V/V

So, Univaded Zone

0 1V/V

Core Water Saturation

1 0unkn

Core Oil Saturation

0 1unkn

Moved Hydrocarbons

Unmoved Oil

Moved Oil

 Gas

Bulk Volumes
Total Por.

0.3 0V/V

Effective Por.

0.3 0V/V

CP Bound Water

0.3 0v/v

Matrix Water

0.3 0v/v

CPHI

0.3 0unkn

Hydrocarbons

Free Water or Poor Q

CP Bound Water

1
:1

0
0

0
 M

D
 in

 ft

Lithology
Rhoma vs Uma v2

Quartz

Calcite

Dolomite

Illite

K-Feldspar

0 1

Permeability
Air Perm - Log

0.00001 10MD

Core Permeability

0.00001 10unkn

Clean

Gross: Vsh only

Net: Vsh & Phi

Pay: Vsh, Phi & Sw

GS

NS

Pay

Shale

GS

NS

Pay

 BW per MMscfg

WATER_BBLS

1 100000unkn

Comp.

Oil

Wet

Tight

Shale

D/B

–1 1

Fractures
Open Closed

Porosity Types
PHIE

0 0.2V/V
DF_SHALE_POROSITY

0.2 0v/v

Porosity Types
DF_FREE_SHALE_POROSITY

0 0.2v/v
TOC_ADJ_VOLUME

0.2 0v/v

CORE_TOC

20 0[N/A]

4
2
5
0

4
3
0

0
4
3
5

0
4
4
0
0

4
4
5

0
4

5
0

0
4
5
5

0
4

6
0
0

4
6
5

0
4
7
0

0
4
7
5
0

4
8
0
0

4
8
5

0
4
9
0

0
4
9
5
0

5
0
0
0

5
0
5

0
5
1
0
0

5
1
0
0

Gross: Vsh only

Net: Vsh & Phi

Pay: Vsh, Phi & Sw

Mesa Verde

UMV Shale

Very low TOC and 

free shale porosity 

Sand intervals are brittle

Pay intervals mostly 

water-free 

Water production close 

to pay intervals

Minor shale 

contribution
Fractures common
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