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Abstract 

 

Chemostratigraphy uses major, minor and trace element geochemistry to characterize, subdivide, and correlate strata. Traditionally within 

Pioneer’s South Texas Asset Team, chemostratigraphy has been used primarily for geosteering horizontal wells (Eagle Ford and Austin Chalk) 

– either real time or post-drill to determine lateral placement with respect to a known target zone. These correlations are referenced back to 

geochemical signatures observed in pilot well(s). 

 

After a comprehensive review, other applications of this geochemical dataset have been identified, most notably the ability to estimate Total 

Organic Carbon (TOC), paleoredox facies, and proxies for VClay in terms of carbonate-rich and clay-prone facies. Certain redox-sensitive 

trace metals such as molybdenum and nickel are concentrated in organic carbon-rich intervals of the Eagle Ford Formation. Using these trace 

metals, an estimation of TOC has been derived for certain key wells from Atascosa, Bee, DeWitt, Karnes, La Salle, Lavaca and Live Oak 

counties. In addition, using the enrichment or depletion of minor and trace elements relative to their crustal abundances, anoxic or oxic 

conditions may be inferred. This dataset was used to elucidate vertical and lateral paleoredox conditions and facies variability within the 

organic-rich Eagle Ford Shale and how that variability can affect well performance. 

 

This geochemical dataset was integrated with geomechanical data to develop relationships for estimating the geochemical response from 

geomechanical properties, using multi-attribute transforms, neural network analysis, and principle component analysis. Based on these 

relationships, 3D volumes of specific geomechanical properties derived through pre-stack seismic inversion were used to propagate the 

geochemical data from wells into 3D volumes. This estimation of the geochemical response away from the wellbore using 3D surface seismic 

data provides a powerful means of improving the lateral resolution and predictive capabilities of the geochemical analysis. 

 

TOC and the brittleness (VClay) of the Eagle Ford are two key performance drivers in Pioneer’s ‘sweet spot’ acreage of DeWitt and Karnes 

counties. Well look backs in these counties have consistently shown that TOC and VClay can be correlated to well performance (Portis et al., 

2013). Estimated TOC and brittleness from inorganic geochemistry within horizontal wells and the extension of this geochemical data to 3D 
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via relationships with geomechanical properties from seismic inversion provide another tool to evaluate variability as well as high-grading 

intervals within the Eagle Ford Formation across Pioneer’s acreage position. 
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Eagle Ford Well Performance Drivers 
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Chemostratigraphy 

 Utilizes elemental geochemistry, from which mineralogy, depositional environment, and sediment 

source can be inferred and well-to-well correlations can be made and/or confirmed 

 Very useful for evaluating rapid changes in what appear to be ‘homogeneous’ mudrocks 
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Elemental Data Derived using Hand Held XRF 

Elemental Data derived 

using X-Ray 

Fluorescence (XRF) 
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Hand Held XRF Data – Pilot & Lateral 
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Choice of Elemental Proxies 

PCA Analysis using Elemental Data 
 

- Calculate and interpret different element 

concentrations using XRF data from well 

cuttings samples. 

 

- Identify elements that correlate with rock 

properties in order to better define target 

windows in zones with poor data control. 

Kerogen, Vclay, etc. 

 

- Perform Principal Component Analysis (PCA) 

over a set of identified key elements from 

the hand held XRF data. Interpret matrix 

correlations, eigenvalues, contribution, etc. 

 

- Proceed with multi-source data integration 

using the most appropriate elemental proxies 

for rock properties 
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 SiO2 is strongly correlated with Al2O3 and CaO is 

strongly anti-correlated with Al2O3 

 Mo has almost no correlation with Al2O3 

 Mo and Ni do have a fairly strong correlation 

 Ni also exhibits some correlation with Al2O3 

Analysis Matrix: Correlations 
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Facies Logs & Geology 
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Relationship with Petrophysical Interpretation 
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Sweet Spot Mapping: Seismic and Wells 
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Integrating OH Logs and Cuttings 

Sweet spot identification is based on mechanical 

properties and high Mo from XRF data.  
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Rock Properties vs. Clay Content 
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PCA Multi-Attribute Mapping 
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Seismic Facies Map – PCA Mapping 
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Molybdenum and TOC 
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Molybdenum vs. Mechanical Properties 

Analysis of 25 wells suggests that high 

Mo zones (Mo > 10 ppm) are confined 

to specific rock property ranges. 

Young’s Modulus: 21 – 39 GPa Density: 2.37 – 2.55 g/cc Poisson’s Ratio: 0.23 – 0.28 



The predicted Mo 

curves from the OH log 

mechanical properties 

Density, Poisson’s Ratio, 

and Young’s Modulus 

had a CC = 0.78 with 

the measured Mo curves 

from Hand Held XRF and 

an average error of  

~7 ppm. 

EMERGE: Multi-Attribute Regression  

The independent attribute curves are then 

combined using a weighted sum to predict 

the desired target curve 

EMERGE determines the best combination of 

independent attribute curves for prediction of 

a desired target curve via stepwise regression 

The predicted curves are then compared to the 

actual target curves in order to assess error and 

robustness of the prediction 
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Multi-Attribute Regression  

The independent attribute curves are then 

combined using a weighted sum to predict 

the desired target curve 

EMERGE determines the best combination of 

independent attribute curves for prediction of 

a desired target curve via stepwise regression 

The predicted curves are then compared to the 

actual target curves in order to assess error and 

robustness of the prediction 

After the analysis with the OH logs confirmed that Mo from HH XRF could be predicted from the mechanical properties, the 

process was repeated with the seismic inversion results in order to produce a 3D volume of Molybdenum 
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Molybdenum Sweet Spot Zone (Mo > 10 ppm ≈ 3% TOC) 
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Eagle Ford Sweet Spot: TOC (Mo) and Rock Properties 
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Summary and Conclusions 

 Within our northeastern acreage position the main performance drivers are 

VClay (brittleness) and organic content 

 Elemental data from hand held XRF can be used as proxies for petrophysical 

parameters; for this area Mo serves as a good proxy for TOC and Al2O3 serves 

as a good proxy for VClay 

 Principal Component Analysis of the elemental data shows interesting and 

expected relationships between the elements; notably Mo and Al2O3 have no 

correlation 

 Mechanical properties (Young’s Modulus, Poisson’s Ratio and Density) can be 

used to discriminate VClay and TOC (using Mo as a proxy) 

 Inversion of seismic data allows for the extension of these mechanical 

properties to 3D volumes 

 Previous studies have been limited to pilot open hole logs with ~11,000 feet 

of available data 

 An extension of this analysis through the use of XRF data from lateral wells 

as proxies for petrophysical data increases the available data to ~400,000 

feet  

 

 


