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Abstract

Chemostratigraphy uses major, minor and trace element geochemistry to characterize, subdivide, and correlate strata. Traditionally within
Pioneer’s South Texas Asset Team, chemostratigraphy has been used primarily for geosteering horizontal wells (Eagle Ford and Austin Chalk)
— either real time or post-drill to determine lateral placement with respect to a known target zone. These correlations are referenced back to
geochemical signatures observed in pilot well(s).

After a comprehensive review, other applications of this geochemical dataset have been identified, most notably the ability to estimate Total
Organic Carbon (TOC), paleoredox facies, and proxies for VClay in terms of carbonate-rich and clay-prone facies. Certain redox-sensitive
trace metals such as molybdenum and nickel are concentrated in organic carbon-rich intervals of the Eagle Ford Formation. Using these trace
metals, an estimation of TOC has been derived for certain key wells from Atascosa, Bee, DeWitt, Karnes, La Salle, Lavaca and Live Oak
counties. In addition, using the enrichment or depletion of minor and trace elements relative to their crustal abundances, anoxic or oxic
conditions may be inferred. This dataset was used to elucidate vertical and lateral paleoredox conditions and facies variability within the
organic-rich Eagle Ford Shale and how that variability can affect well performance.

This geochemical dataset was integrated with geomechanical data to develop relationships for estimating the geochemical response from
geomechanical properties, using multi-attribute transforms, neural network analysis, and principle component analysis. Based on these
relationships, 3D volumes of specific geomechanical properties derived through pre-stack seismic inversion were used to propagate the
geochemical data from wells into 3D volumes. This estimation of the geochemical response away from the wellbore using 3D surface seismic
data provides a powerful means of improving the lateral resolution and predictive capabilities of the geochemical analysis.

TOC and the brittleness (VClay) of the Eagle Ford are two key performance drivers in Pioneer’s ‘sweet spot” acreage of DeWitt and Karnes
counties. Well look backs in these counties have consistently shown that TOC and VVClay can be correlated to well performance (Portis et al.,
2013). Estimated TOC and brittleness from inorganic geochemistry within horizontal wells and the extension of this geochemical data to 3D
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via relationships with geomechanical properties from seismic inversion provide another tool to evaluate variability as well as high-grading
intervals within the Eagle Ford Formation across Pioneer’s acreage position.
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South Texas Regional Framework
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Facies Variability: VClay (Brittleness)
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Facies Variability: TOC (Kerogen)
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Chemostratigraphy

= Utilizes elemental geochemistry, from which mineralogy, depositional environment, and sediment
source can be inferred and well-to-well correlations can be made and/or confirmed

= Very useful for evaluating rapid changes in what appear to be ‘homogeneous’ mudrocks
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Elemental Data Derived using Hand Held XRF st
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Elemental Proxies
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Hand Held XRF Data - Pilot & Lateral
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Paleoredox Facies - Strike (SW to NE)
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Oxygen Minimum Zone PIONEER
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Oxygen Minimum Zone (OMZ) is an oxygen-depleted layer of water, usually in 200 to 1000 meters water depth
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Choice of Elemental Proxies

PCA Analysis using Elemental Data .
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Analysis Matrix: Correlations

Clay Brittle Organic Matter

Al203 [ca0 Mo  |Ni Si02
Al203 | 1.00| -0.96| 0.03| 0.32| 0.92 ALO,
CaO | -0.96| 1.00| -0.08| -0.32| -0.98|-
Mo | 0.03| 0.08| 1.00/ 0.82| 0.00 0

Ni | 0.32| -032| 0.82| 1.00| 0.9 [ =
sio2 | 0.92| -098| 0.00| 0.19| 1.00| |=f- 1= -
= SiO, is strongly correlated with Al,0; and CaO is Mo
strongly anti-correlated with Al,O;
= Mo has almost no correlation with Al,O; _
= Mo and Ni do have a fairly strong correlation Ni/

= Ni also exhibits some correlation with Al,0,
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Eigenvalues & Component Variables e LR
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Eigen Values |Contribution |Cumulated _
Component 1 3.1 61.4 61.4 <i0n
Component 2 1.7 34.2 95.6 : ® o s
Component 3 0.2 3.4 98.9 B) : &co
o
Component 4 0.1 1.0 99.9
Component 5 0.0 0.1 100.0 Nig s
A
| ] 100.0 '
98.9 99.9 100.0 %00 os
70:0 I’:l 04
v 614 /6(/(/ EZZ =4 Contribution 2 Ak : “; —:_LA‘
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200 Mo *
0.1 10.0
Component 1 Component 2 Component 3 Component 4 Component 5 v ‘ Cao
Eigenvalues
Component 1 |Component 2 |Component 3 [Component 4 < A
Al 0.95 0.19 0.11 0.16| ° A eco
CaO 0.98 -0.18 -0.93 0.03 8 ’ Si02 ® Mo ' o
Mo -0.24 -0.93 -0.25 0.061
Ni -0.49 -0.82 0.26 -0.07
Si02 -0.94 0.28 -0.139 -0.11

4 Components cumulate 99.9% of the data
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Facies Logs & Geology
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Relationship with Petrophysical Interpretation
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Sweet Spot Mapping: Seismic and Wells

Cuttings
Data

OH Log 4 Ty ’
Data . | 9. <3  §

@ Time- Depth Control
@® Mechanical Properties
@ XRF & Mechanical Properties

MEXICO




(1om07 B 31PPIW)
auoz 198Je] ,0/L=

———

PIONEER

7
o
E
(@)

y[eyD unsny S ELE] epng

2

PR

POWIng = |

1cat
properties and high Mo from XRF data.

=3

oY | | POWBRUS SSellaE =
)
t 2R vy o p—
=3 POW “A & B =
O ol B B eea s Pk e |..na
L @]
O i S
= | L0197 | il L TS
a ) . Mm S B e o L me e eeoe § ———
wl—w,ml ©
N | | Juxow 3
g el aal o0 0 e aae. s ©
o TR [ P Ty — 0
Asolod k[ n
— mulm,ml c
L AASISOY 2
on
c
o

®
Pilot
GR

T pes ST
o S =i BSiRE]
7 I 1 .J
— 1 " M " Rl R e S e *
| EA N il E NP AAN AN R O TRy
w o o L1 w| s RN M B
R 2 zhelle ol b B R .
it & SN TR A SN —
| ] ] | RN AR TR B TRy
o | 2] S NN Y e
g olollofoliokal o TN
= & S Shmfz|.0
NE 2 SE e -
E- i 2R
Sort e ‘obel'e _
—J=EETETET TS :
b={- ) N O = % il
NWMWWWW,WWMMWM i HiHr d
W=RZU=z 2| =l = = 1 TS
— R S S 2 g HHH ° u—
= BN T N (] t ity
MEHERETWCTT,E s § §
_%WEH,F“LMUR,T i HHHITH
| = r il )
— ?qum,MHMTMAUFu F ittt
TR0 | v a9 5 O,‘
o fl<g [| B! ®S | L T
,tL ot | %ﬂ it
o sialzl LUO,U Y AR it n DI
= +=T=" T T T T T T T
Q (=] < Q [ =) (=] Q
(e} [« (=] [} [<] < (=} S
DEPTH (FT) fe @ R kS g I o
o o™ o o o™ M L]
e 11000 L f _ L +J
=
- Q
— w




Rock Properties vs. Clay Content

PIONEER
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Middle & Lower Eagle Ford Shale
Mechanical Properties Colored by VClay

Color: Average of MMIN.VCLAY

Upper Eagle Ford

Middle Eagle Ford

Variation can not be
mapped with a single
attribute

Lower Eagle Ford
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PCA Multi-Attribute Mapping

Middle and Lower Eagle Ford :
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Color bands represent facies
classification for Vclay




Impact on Seismic Facies Classification
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Impact on Seismic Facies Classification
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Seismic Facies Map - VClay

Data Relationships (Linear Regression)

I Data Relationships (Details)
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Seismic Facies Map - PCA Mapping
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Molybdenum and TOC
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Molybdenum vs. Mechanical Properties
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Young’s Modulus: 21 - 39 GPa

Density: 2.37 - 2.55 g/cc

Poisson’s Ratio: 0.23 - 0.28
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Above 10 ppm Molybdenum
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Analysis of 25 wells suggests that high
Mo zones (Mo > 10 ppm) are confined
to specific rock property ranges.
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EMERGE: Multi-Attribute Regression

EMERGE determines the best combination of The independent attribute curves are then
independent attribute curves for prediction of combined using a weighted sum to predict
a desired target curve via stepwise regression the desired target curve
Attributes: ? b,c,d,ef g hij k| m, n'T Target Well Log Three Attributes
g as best single attribute 4 . :
gla. gb, gc, gd, ge, of, ah, gi, gj, gk, gl, gm, gn, glo
T P
ge as best attribute pair > ”

gea, geb, gec, ged, gef, geh, gei, gej, gek, gel, gem, gen, geo
| |
1
geo found as best attribute triplet

geoa, geob, geoc, geod, geof, geoh, geoi, geoj, geok, geol, geom i L
| ]

Five Point Operator: 3
Five points per

! o
geol found as best attribute quad attribute are averaged o
for one log point o

Stepwise Regression

The predicted curves are then compared to the
actual target curves in order to assess error and
robustness of the prediction

Mop = a*f(Dn) + b*g(PR) + c*h(YM)
o cC=0.78 N The predicted Mo
- T ipay curves from the OH log
] mechanical properties
o - r’? =) -» Density, Poisson’s Ratio,
= T and Young’s Modulus
o T E had a CC = 0.78 with
- = = the measured Mo curves
o L] 2 from Hand Held XRF and
o ' a? R i e an average error of
E - ~7 ppm.
— P .
- = Mo (from XRF)

Mo (from XRF) Mo (predicted fron Hampson-Russell “L CGG

OH logs)
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Multi-Attribute Regression

After the analysis with the OH logs confirmed that Mo from HH XRF could be predicted from the mechanical properties, the
process was repeated with the seismic inversion results in order to produce a 3D volume of Molybdenum

0 313 10 330 2170 210

”| a*f(Dn) “ + b*g(PR) + c*h(YM) w|’

-~ Well Name

CC=0.84

The predicted Mo TRy
curves from the seismic
inversion mechanical
properties Density,
Poisson’s Ratio, and
Young’s Modulus had a
CC = 0.84 with the
measured Mo curves
from Hand Held XRF and
an average error of

< 6 ppm. “ |iln-|5 Zh 25 30 35 a0 45 50 55 B0 I
Mo (from XRF)

Mo (predicted)




Outline DR

Eagle Ford Shale production growth
South TX regional framework
Eagle Ford well performance drivers
— VClay and TOC impact
Elemental data and XRF
— Elemental proxies

— Mapping elemental data from
cuttings

Principle Component Analysis (PCA) of
elemental data

— Key elemental proxies for Eagle Ford =

Mechanical properties and seismic
attributes

— Inversion and mapping
— Multi-attribute analysis
— VClay and Mo volumes
Sweet spot mapping
Summary and conclusions Big Bend National Park, TX




Molybdenum Sweet Spot Zone (Mo > 10 ppm = 3% TOC) %

Top
Eagle
Ford

N\ Middle
5 Ford
| Lower

Eagle
Ford

MultiMin Kerogen

[ 21-40 )
B 41-xx | Ranking Bubble Color = Ranking

L]

B0 }Well Bubble SIZE = Net/Gross

)
)

)

VBRIT: >70%
TOC: > 8%
VCL: < 28%
PIGE: >8%

TOC (kerogen) content differentiates
average wells and top 35% wells

Brittleness/Thickness | ————>

0 50 60 70 80 90
TOC/Thickness | ——————> Welis w pilot data




Eagle Ford Sweet Spot: TOC (Mo) and Rock Properties {aiAsiaas

Mo > 10 ppm
& VClay < 30%

[ 21-40

B2 ) | Bubble SIZE = Net/Gross
B 41-xx | Ranking Bubble Color = Ranking

VBRIT: >70%
TOC: > 8%
VCL: < 28%
PIGE: >8%

Brittleness/Thickness | ————>

D 0 50 60 70 80 90
TOC/Thickness | ——————> Welis w pilot data




Summary and Conclusions CIONEER

=  Within our northeastern acreage position the main performance drivers are
VClay (brittleness) and organic content

= Elemental data from hand held XRF can be used as proxies for petrophysical
parameters; for this area Mo serves as a good proxy for TOC and Al,O, serves
as a good proxy for VClay

=  Principal Component Analysis of the elemental data shows interesting and
expected relationships between the elements; notably Mo and Al,0; have no
correlation

= Mechanical properties (Young’s Modulus, Poisson’s Ratio and Density) can be
used to discriminate VClay and TOC (using Mo as a proxy)

= |nversion of seismic data allows for the extension of these mechanical
properties to 3D volumes

= Previous studies have been limited to pilot open hole logs with ~11,000 feet
of available data

= An extension of this analysis through the use of XRF data from lateral wells
as proxies for petrophysical data increases the available data to ~400,000
feet




