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Abstract 
 
Naturally fractured reservoirs (NFR) are the main producers of hydrocarbon in the southeastern part of Mexico, and the need to 
be modeled is a challenge, since these models serve as guide for the locations of exploratory and development wells. The main 
objective of this work is to show a methodology to develop a 3D model that represents the orientation and distribution of 
conductive fractures in the reservoirs. This task requires analysis of fracture attributes and integration of data from different 
scales: thin sections, cores, images logs and seismic. We applied the SDPS (Structural-Diagenetic-Petrographic-Study) 
methodology to calibrate and to extrapolate the attributes of conductive aperture and fracture density. A 3D geological model, 
built from structural seismic interpretation and geomechanical data, was created to compute structural attributes. The final 
products were a Discrete Fracture Network that simulates each fracture set, and a flow model for each conductive set. Six wells, 
eleven cores, nineteen structurally oriented thin sections, six-hundred thin sections from cutting samples, five images logs, and 
one triaxial test from two oil and gas fields were analyzed. The two fields, located in the southeast of Mexico, consist of two 
main reservoirs: carbonate basinal facies, with less than 2% of matrix porosity, and an internal ramp facies with porosities of 4 
to 6%. Based on their structural-diagenetic origin, five fractures sets were identified. Two are conductive: Set 4 (NE-SW) and 
Set 5 (N-S), and three sets are sealed: Set 1 (N-S), Set 2 (NW-SE), and Set 3 (E-W). The SDPS indicates that deformation 
degree, porosity and diagenetic processes (recrystallization) were the main geological controls of fracturing. Geomechanical 
data was used to analyze the deformation of the rock and to compute structural attributes, which were integrated with the SDPS 
results to model the conductive sets and to predict their distribution. With the result of this modeling has been verified that the 
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trajectory of the wells T-1, 3, 11, and 23 intercepted the main conductive fractures sets favorably, but it was not the case for T-
12 and 1 DL wells. The well N-1 cut just a little favorably the main fracture sets. The wells productivity confirms the quality of 
fracture sets identified. Therefore, this work demonstrates that the results of this methodology can be used as a guide to propose 
new exploratory and development well locations. 



                  The methodology includes the analysis of fracture sets in well cores and in oriented thin sections. The SDPS consists in establishing the reservoir paragenesis sequence, including the fracturing as an additional diagenetic process 
(Monroy, 2001). Once the paragenesis is established, it is possible to differentiate sets of fractures of different origin by their attributes and cross-cutting relationships. From this, the SDPS permits to determine the orientation, density and 
quality of conductive fractures sets in the reservoir, these are hard data for fracture modeling that can be calibrated with dynamic data, such as production tests, traces, PLT´s, normalized cumulative productions, and interference tests 
(Monroy, 2009). The calibrated fracture model guides the development of the fields, and is also used to design the best drilling trajectories of wells.  

            
ABSTRACT 

METHODOLOGY 

  Naturally fractured reservoirs (NFR) are the main producers of hydrocarbon in the southeastern part of Mexico, and the need to be modeled is a challenge, since these models serve as guide for locations of exploratory 

and development wells. This task requires analysis of fracture attributes and integration of data from different scales: thin sections, cores, images logs and seismic. In this work, we applied the SDPS (Structural-Diagenetic-

Petrografic-Study) methodology, to calibrate and to extrapolate the attributes of conductive apertures in a carbonated reservoir, located in one of the most important oil and gas production region in Mexico. A 3D geological model 

built from structural seismic interpretation and geomechanical data, was created to compute structural attributes. The final product is a discrete fracture network (DFN) that simulates each fractures sets, and a flow model for each 

conductive set.  

 The main objective of this work is to show an integrated methodology to develop a 3D model that represents the properties of conductive fracture sets in carbonated naturally fractured reservoirs. This study was focused on 
characterization of fractures at different scales and their integration in a model that represents how these fractures interact in the flow of fluids in the subsurface.  

OBJECTIVE 
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Partially conductive  
Non conductive 

Methodology: 
1. Identify fracture sets based on orientation and cross-cutting 

relationships.  
2. Determine the structural-paragenetic sequence. 
3. Calculate attributes (aperture, porosity, intensity, spacing, connectivity) 

for each fracture set. 
4. Calculate the grade of conductivity for each fracture set. 

Stereonet projection and code 
used for fracture conductivity 

SDPS 
Structural Diagenetic Petrographic Study 

Orientated thin section 

Acquisition of structural and sedimentary 
information.  
Orientated samples for a SDPS. 

Rock mechanics 
analysis 
Elastic modules, 
and Mohr-
Coulomb criteria  

Seismic scale analysis 

Note: Fracture sets are filtered according to the quality 
conductivity determined in the SPDS. 

Images log 
interpretation 

Log interpretation 

Well data analysis/blocking 

Integration of core data, fracture attributes and images log analysis by 
fracture set.  Well data blocking: Data scale change from scale of well logs 
to scale of fine-scaled grid. 

Well Data blocking 

Reservoir properties 

Fracture attributes propagation using geostatistics, for each 
fracture set, in the fine-scaled geological grid. 

cture attributes propagation using geostatistics for eac

Simulated DFN fracture sets with corresponding conductivity property 
displayed  along with fracture probability attribute on fine-scaled grid 

3D FRACTURE MODEL 

Upscaling 

Fracture density rescaled from the fine-scaled grid to the coarse-scaled grid 

   Flow simulation grid 

Building coarse-scaled Flow Simulation Grid from 
structural model 

Mallet,2011 

Geomechanics parameters 

Core scale 
analysis 

           Conductive set 
Partially conductive set

           Non conductive set 

Cutting samples and core 
analysis. Fracture abundance log 

DATA 
 Six wells, eleven cores, nineteen structurally oriented thin sections, six-hundred thin sections from 
cutting samples, five images logs, and one triaxial test from two oil and gas fields were analyzed.  
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STUDY AREA 
  The methodology was applied in two 
oil and gas fields, located in the southeast of Mexico. Two 
reservoirs are present in each field: 
A) Cretaceous carbonates on basinal facies, with lower 
than 2% of matrix porosity. Natural factures provide the 
main permeability.  
B) Jurassic internal carbonated ramp facies, with 
porosities from 4 to 6%. Main porosities are from 
dissolution and intercrystalline.  

SDPS 
 Based on their structural-diagenetic origin, five fractures sets were 
identified. Two are conductive: Set 4 (NE-SW) and Set 5 (N-S); three are sealed: 
Set 1 (N-S), Set 2 (NW-SE), and Set 3 (E-W). The SDPS indicates that deformation 
degree, porosity and diagenetic processes (recrystallization) were the main 
geological controls of fracturing. 
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Methodology: 
 

1. Structural Model Building 
2. Creation of the fine-scaled grid 
3. Use of the UVT transform with 

geomechanical data when 
appropriate to compute structural 
attributes: curvatures, dilatation, 
dip/azimuth, Fracture probability. 

From Mallet, 2011 

UVT TRANSFORM 

      Fine-scaled grid / Structural attributes 

Fine-scaled Geological grid 
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CORE-IMAGES LOG vs SDPS ANALYSIS 
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SDPS DATA 

T-1DL/3,4 Set 1 05°/74° NS Non conductive not present not computed not computed not computed 0
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60 fractures of 
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 STRUCTURAL MODEL AND GEOLOGICAL GRID 
Creation of the structural model and building the fine-scaled Geological grid. Please note that the fine-scaled grid respects the 

structural model without simplification of the faults or the horizons as interpreted with the seismic. The cells of the Geological grid are cut by faults 
(this grid is not pillar-grid based). 

 AZIMUTH AND DIP  
Computation of azimuth and dip of each grid cell of the Geological grid.  

 CURVATURE 
The mean and Gaussian curvatures are computed onto each of the Geological grid cells. 

The combination of the information from the mean curvature and the Gaussian curvature allows to 
perform a qualitative description of the shape of the structures by computing the geologic curvature 
(Burtscher, A., Frehner, M., and Grasemann, B., 2012). The geologic curvature attribute separates the 
shape of the geological surfaces into eight areas of similar structural aspect.  

The UVT transform links both the Geological grid at time of deposition (geochronological space) 
and the Geological grid at present state (geological space) which has undergone the sum of all 
deformations which have affected the field. Consequently, we know the vector of displacement for each 
grid cell between the moment of deposition and present, allowing a computation of a strain tensor. Using 
Hooke’s law, it is possible from the strain tensor to compute the stress tensor using Poisson ratio and 
Young Modulus. The sensitivity of the rock material to the fractures can be assessed through a failure 
criterion, like the Mohr-Coulomb criterion (using Mohr-Coulomb cohesion and friction angle parameters). 
Ranges of geomechanical parameters values are used in order to take into account their uncertainties, 
allowing the computation of a fracture probability (Mace, 2004). 

 

STRUCTURAL ATTRIBUTES
 UPSCALING 

Upscaling of the fracture density calculated from images well logs to the scale of the fine-scaled Geological grid � Well data blocking. 
The arithmetic mean upscaling method was chosen, as it was the one which best preserved the statistics of distribution of the data from the 
images well logs and its heterogeneity. The fracture density data at the scale of the fine-scaled Geological grid was crossplotted against the 
structural attributes computed previously onto the Geological Grid to find correlations. 
 

Zone in compression Zone in extension 

convention for fracture orientation 

Filter with the fracture 
probability structural 

attribute 

The fracture density property for each fracture set is simulated onto the whole Geological grid using a Sequential Gaussian Simulation, collocated 
coKriging (Multi) algorithm with the blocked fracture density data as the first data and the structural attributes as secondary data. In order to obtain a fracture density 
representative of the heterogeneity of the repartition of the fractures within the reservoir, several equiprobable simulations for each fracture set are performed and 
the mean of the simulations is computed.  

Use of the fracture probability structural attribute to filter the results of the geostatistics. 

Example of separation extension/compression zones for both Jurassic Kimmeridgian and Upper Cretaceous in a reservoir. The geostatistics simulations 
are done separately inside the four regions: Compression- Jurassic Kimmeridgian / Extension- Jurassic Kimmeridgian / Compression- Upper Cretaceous / Extension- 
Upper Cretaceous. 
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 DILATATION 
The Geological grid, built using the faults and horizons as interpreted onto the seismic, corresponds to the model at the state which 

has registered the sum of all the deformations undergone by the field. The UVT-transform allows the computation of the Geological grid at the 
time of deposition of the sediments, before the deformation. The dilatation is defined by (volume of the actual time - volume at time of 
deposition)/(volume at time of deposition). 

Positive dilatation = extension (increase in volume); Negative dilatation = compression (loss in volume) 
The dilatation is computed on all the grid cells of the Geological grid, using the UVT transform and the geomechanical parameters of the rock. 
We have access to the very detailed information stating if the local part of the structure has undergone mainly compression or extension with the 
sum of deformations of the field. 
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 FRACTURE PROBABILITY 

The fracture density well log obtained from images logs does not make the 
distinction between the various fracture sets. The main FMI observed fracture 
orientation (azimuth) well log was used to split the fracture density well log into seven 
different fracture density well logs (one for each fracture set) taking into account the 
fracture sets orientation known from the detailed core analysis and the geological 
region (JSK / KS). 

Analysis of the well log data for each fracture set density (histogram). 
Changing the scale of the fracture density well logs to the scale of the fine-scaled grid 
and creation of vertical trend curves. 
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 FRACTURE DENSITIES PROPAGATION INSIDE THE GEOLOGICAL GRID 

RESERVOIR PROPERTIES WELL DATA ANALYSIS 
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The Flow Simulation Grid is a structured grid with faults stair-stepped in 3D and cells as 
orthogonal as possible in order to conserve mathematical consistency during fluid flow simulations. It 
is optimized for fluid flow simulations and DFN simulations. 

Upscaling of the fracture densities from the fine-scaled Geological grid to the coarse-scaled 
Flow Simulation Grid. 

The Discrete Fracture Network (DFN) simulation is performed on the Flow Simulation Grid. 

Left: Geological grid. Fracture densities propagation performed inside the Geological grid optimized 
for structural attributes computation and geostatistics. 

Right: Flow Simulation Grid optimized for flow simulation and DFN simulation. Upscaling for all the 
fracture densities from the Geological grid to the Flow Simulation Grid, using an arithmetic average method 
with weighting by the cell volume. 

Results of simulation of the fracture planes (Discrete Fracture 
Networks), for each fracture set. 

A DFN simulation was performed for each of the fracture set using the following parameters: 
Fracture density: the one upscaled at the previous step 
Fracture length: 1-5m (SDPS) 
Fracture height: fracture height/length=0.5 (length=2*height) 
Fracture set orientation (SDPS): Dip and dip azimuth 
Aperture: (SDPS) 

The fracture properties are upscaled from the simulated fracture 
planes to the Flow Simulation Grid  in order to get a double porosity-double 
permeability grid which can be exported to fluid flow simulators. 
 

The results of the study are: 
(1) A detailed fracture characterization study which allowed to identify the number of fracture sets and their attributes, 
(2) A 3D structural model representing faults and horizons as interpreted at the seismic scale along with a 

geomechanical model,  
(3) A fracture density model representing the heterogeneity of repartition of the fracture sets,  
(4) DFN simulations allowing to represent explicitly the fracture planes of the various fracture sets, taking into 

account the distribution model computed before and the fracture attributes as determined by the SDPS 
methodology,  

(5) A double porosity-double permeability model which can be sent to a fluid flow simulator. 
(6) Reduction of uncertainties and risks in the exploration and development of oil and gas fields, optimizing the 

investment of a project. 
With the result of this modeling has been verified that the trajectory of the wells T-1, T-3, T-11, and T-23 

intercepted the main conductive fractures sets favorably, but it was not the case for T-12 and T-1DL wells.  
The Nav-1 well cut just a little favorably the main conductive fracture sets.  
The well productivities of these wells confirmed the quality of fracture sets identified. Therefore, this work 
demonstrates that the results of this methodology can be used as a guide to propose new exploratory and 
development well locations. 

The work presented here is an example of integration of fracture data 
characterized at different scales (thin sections, cores, well logs) along with a 
geomechanical model in order to create a 3D model predicting the distribution of the 
fracture sets into a carbonate naturally fractured reservoir. 
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