Pennsylvanian and Wolfcampian Sequence Stratigraphy Using FMI and Log Analysis on the Western Edge of the Midland Basin: A Tool for Guiding Well Completions

Shane J. Prochnow¹ and Gregory D. Hinterlong¹

Search and Discovery Article #41388 (2014)**
Posted July 21, 2014

*Adapted from poster presentation given at AAPG 2014 Southwest Section Annual Convention, Midland, Texas, May 11-14, 2014
**AAPG©2014 Serial rights given by author. For all other rights contact author directly.

¹Chevron U.S.A. Inc., Midland, TX (SProchnow@chevron.com, ghinterlong@chevron.com)

Abstract

The Pennsylvanian and Permian (Wolfberry) tight carbonate and shale play in the Midland Basin is most often considered a cost play, resulting in a tendency to be parsimonious with the acquisition of formation evaluation data and other services that facilitate optimal completion, especially with “manufactured” wells. A sequence stratigraphic framework for the play in the western Midland Basin was constructed from Schlumberger high definition image logs (FMI-HD), wire line data, and core to predict lithofacies and reservoir characteristics. The stratigraphic framework has been linked to rock mechanic properties such as Poisson's ratio, Young's Moduli, and estimates horizontal stresses that affect the brittleness and fracability of these reservoirs. The framework describes 32 high-frequency sequences (4th and 5th order) that can be grouped into lower-order composite sequences and correlated for at least 10s of kilometers. Our model predicts both the distribution of brittle lithofacies that are conducive to hydraulic fracturing and the occurrence of favorable reservoir conditions, like porosity development. Porosity, brittleness, natural fracture development, and mud log shows are associated with carbonate-prone high stand (HST) systems tracks, while potential fracture baffles are associated with more siliciclastic-prone and ductile low stand (LST) systems tracts. Brittle and more organic rich mudstones occur in transgressive stand (TST) and lower HST systems tracts, with the best mud log shows often occurring near maximum flooding surfaces. The sequence stratigraphic framework provides excellent perspective for regional opportunity identification and helps to fill interpretive gaps when comprehensive formation evaluation data is not available. This predictive capability assists with all aspects of subsurface assessment from strategic opportunity identification to tactical decisions regarding completion design.
Pennsylvanian and Wolfcampian Sequence Stratigraphy Using FMI and Log Analysis on the Western Edge of the Midland Basin: A Tool for Guiding Well Completions

Shane J. Prochnow, and Greg Hinterlong, Wolfcamp Midland Basin, Midland, Texas SProchnow@chevron.com

Abstract

The Pennsylvanian and Wolfcampian light carbonate and shale play on the Western Edge of the Midland Basin is most likely to be productive based on high quality formation evaluation data from cores and wireline logs, and therefore, formation evaluation data and services that facilitate optimal completion are especially important. Sequence stratigraphic analysis provides excellent perspective for regional opportunity identification and helps to fill interpretive gaps when comprehensive formation evaluation data is not available. This work demonstrates the utility of high resolution sequence stratigraphy for optimal completion design.

Introduction

Modified FMI logs and time to interpret them. Sequence Stratigraphy can be a cost saving measure because of its predictive power.

High resolution sequence stratigraphy can be scaled down to the individual field scale and are especially helpful in identifying opportunities for development. Ideal locations for horizontal landings are identified.

Lessons Learned

Best Practices

FMI logs should be run frequently. Sequence Stratigraphy can be a cost saving measure because of its predictive power, ultimately saving the money that would have been spent on costly frac design.

Challenges

Cost of FMI logs and time to interpret them.

Summary

High resolution sequence stratigraphy can be scaled down to the individual field scale and are especially helpful in identifying opportunities for development.

Parasequence and Sequence Stacking Patterns Compared to Porosity Development

Parasequence and sequence stacking patterns compared to porosity development. Ideal locations for horizontal landings are identified.

Cost of FMI logs and time to interpret them.

Lessons Learned

Best Practices

FMI logs should be run frequently. Sequence Stratigraphy can be a cost saving measure because of its predictive power, ultimately saving the money that would have been spent on costly frac design.

Challenges

Cost of FMI logs and time to interpret them.