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Abstract

Recently introduced azimuthal LWD measurements combined with well-site measurement of parameters on drill cuttings have proven to be a
game changer in the quest for improved productivity in laterals drilled in shale reservoirs. While Pyrolysis, XRF, and XRD measurements on
drill cuttings at the well site provide mineralogical and organic content information in near real-time, of particular interest are the LWD
Azimuthal Spectral Gamma Ray and the LWD Azimuthal Sonic devices, both of which gather data in sixteen azimuthally-fixed bins. The
LWD Azimuthal Spectral Gamma Ray furnishes clay types and identifies zones with high TOC based on the response of the uranium
measurement.

A unipole configuration with a single, directionally focused transmitter and one array of six directional receivers that are azimuthally aligned
with the transmitter is used in the LWD Azimuthal Sonic device. The azimuthally focused sensors can differentiate the slowness of the
refracted compressional and shear waves emanating from different azimuthal directions around the borehole. The sonic waveforms received in
16 azimuthally fixed-orientation bins are processed to yield 16 independent, azimuthally oriented compressional and refracted shear slowness
curves, which in turn, combined with the LWD density, provide 16 curves of Young’s Modulus, Poisson’s Ratio and rock Brittleness Index,
each of which can also be used to generate the corresponding 360° borehole image along the length of the lateral.

The combination of mineralogy, abundance of organic material and accurate brittleness coefficient along the length of the lateral is often
sufficient to define the sweet spots that exhibit enhanced reservoir properties and are amenable to stimulation and fracturing. The LWD
Azimuthal Sonic in horizontal wells provides compressional and shear slowness in the vertical and horizontal directions, and as is common in
anisotropic shale reservoirs, the shear velocity in the horizontal plane is often greater than that in the vertical plane. Combined with the cross-
dipole measurements in a vertical well, an accurate orthorhombic velocity model may be generated. This will lead to greater precision in
tracing the topography of the shale pay on the seismic section and hence lead to more precise definition of the well trajectory. This will
facilitate in confining the well path to the targeted pay zone. Not the least of the benefits of determining the shear anisotropy is that it could be
factored into the stimulation design to achieve more effective hydraulic fracturing.
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Completion Methods

Frac Stages are often placed at arbitrary
spacings along the Lateral WITHOUT
considering the variations in rock and
reservoir properties.

Safety, cost and time considerations
sometimes impel operators to minimize
studies in laterals



SELECTING THE STIMULATION
INTERVALS IS THE KEY

STUDIES HAVE SHOWN THAT:

1. UPTO 21% OF PERFORATION CLUSTERS ARE NOT
CONTRIBUTING

2. 30% TO 43% OF THE PERFORATION CLUSTERS
CONTRIBUTE LESS THAN 1% OF TOTAL
PRODUCTION

3. ONE OF THE PROBABLE CAUSES COULD BE
PLACEMENT OF PERFORATION CLUSTERS IN
ZONES WITH POOR RESERVOIR QUALITIES



Sweet Spot: Identification Methods

® Measurements on Drilling Fluids and Rock Cuttings
offer Approach for Sweet Spot Identification
o Advanced Mud Gas Extraction/Detection

e Cuttings Analysis

- X-Ray Fluorescence, X-Ray Diffraction & Pyrolysis
1. In Pilot Holes
2. In Laterals

® Logging While Drilling
® Wireline Logging
® Seismic



Quad-Combo for Sweet Spots
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GC TRACER FOR SWEET SPOTS




Advanced Mud Gas Measurement
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Delineates top
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the reservoir

Identifies
changes in
fluid type

Can optimize
downhole fluid
sampling

*  Critical fluid properties can be predicted directly from mud gas sample

* Need good calibration data set and good mathematical models

Tonner et al, AAPG ICE 2012



GC Tracer to Detect and Identify
Hydrocarbon Zones

Track 4: Increased Total Hydrocarbon

Track 5: Separation C1 and Balance
Ratio

Track 6: Increased Gas to Liquids Ratio

Track 7: Crossover HC and ARO/ALK
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GC-TRACER™ Data Highlighting the Primary
Zones of Interest in a Horizontal Section
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Total Hydrocarbon Content (THC%)
identifies the Zones of Interest which
results in increased efficiency during

completions planning.

Fluid indicators (C1%, C1/C2, HC &
ARO/ALK & Wetness/Balance) help
in characterizing the Hydrocarbon
fluid type.

Gas components & ratios also
provides an insight into the
petrophysical properties (Porosity
& Permeability).

Fluid saturation differentiates
between a Hydrocarbon saturated
& Water Saturated.



WELLSITE ANALYSIS OF DRILL
CUTTINGS

XRD, XRF AND PYROLYSIS MEASUREMENTS ON
DRILL CUTTINGS IN NEAR REAL TIME



Wellsite Cutting Analysis Work Flow

. Commence with XRD/XRF and Pyrolysis on
Pilot vertical holes and laterals.

. Establish proxies for TOC with Trace
Elements.

. Resolve Mineralogy from the elemental data
set.

. As uncertainty is reduced move to XRF only.



XRF Elemental Composition at Wellsite

Benchtop when compared to hand held device provided greater
range of elements and superior accuracy and precision

* XRF measures 10-12 Major Elements (oxide wt.%)
SiO, TiO, Al,O; Fe,O; MnO MgO CaO Na,O
K,O P,O; (plus S and CI for most lithologies)

* XRF measures 18 Trace Elements (ppm)

V Cr Co Ni Zn Ga As Br Rb Sr Y Zr Nb
Mo Ba Hf Th U

* Many minerals show considerable variability in
their elemental composition, particularly with regard to trace
elements.

Tonner et al, AAPG ICE 2012
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Pilot well: XRF COMBINED with Enhanced Gas Measurements
|dentify the “Sweet Spot”

XRF

Chemostratigraphy /

ineralogy / Brittleness GC-TRACER™ Gas Data

TargstContrs

v . J Total Hydrocarbons Contsnt [THC) Gas to Liquids Ratio [GL)
Retathe Brittensss [T ppm a0 fo 17 [3C Tracer)

+ Excellent agreement between elemental-derived TOC and gas-derived total

hydrocarbons Hashmy et al, 2012




Eagle Ford Lateral: Elemental Geosteering &

Formation Evaluation

V/Al,O; TOC Proxy
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TARGET INTERVAL

Wellbore maintained +/- 10 feet above target in dipping beds




Brittleness
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Cocktail A
Cocktai
of Lateral
Cocktail C
of Lateral

7

*57% of The Lateral

*17% of The Lateral
----1000 feet

| «600’ of Lateral
| «2000"

|

| +900
...i *26% of The Lateral

Abou-Sayed et al, 2011
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LWD FOR SWEET SPOTS




AZIMUTHALLY FOCUSSED UNIPOLE LWD SONIC

Receiver Array
A

Unipole configuration
used with a single,
directionally focused,
transmitter and one
array of six directional
receivers which are
azimuthally aligned
with the transmitter

Attenuator

Orientation of the 16 azimuthal bins.

Unipole
Transmitter

X-Y Magnetometers
track the azimuthal
orientation as the drill
string rotates.
Differentiates P & S
from different
azimuthal directions

Mickael, M.: (SPE 162175, 2012)




CrossWave Azimuthal Sonic Data Acquisition

As the tool rotates, X- and Y-axis
magnetometers track the
orientation of the transducers.

Owver a 30 second acquisition cycle,
210 azimuthally-oriented
waveform sets are acquired and
sorted into 16 azimuthal bins to
facilitate analysis of shear wave

anisotropy.

(Standard real-time DTC and DTS
are available every 10 seconds.)




AZIMUTHAL LWD SONIC wvs.
WIRELINE COROSSED DIPOLE

AZIMUTHAL SHEAR NOT SIGNIFICANTLY
DSIPERSSIVE:

FREQUENCY DEPENDENT DISPERSSION
CORRECTION NOT NEEDED

BOREHOLE DEPENDENT DISPERSSION
CORRECTION NOT NEEDED

CENTERING OF LWD AZIMUTHAL SONIC
IN BOREHOLE IS NOT A PROBLEM AS FOR
WIRELINE CROSSED DIPOLE DEVICE.



LIMITATIONS

SHEAR MEASUREMENT IS ONLY AVAILABLE
WHEN FORMATION SHEAR VELOCITY IS
FASTER THAN THE COMPRESSIONAL
VELOCITY IN THR BOREHOLE FLUID

HIGH TRANSMITTER FREQUENCY RESULTS
IN FAIRLY SHALLOW DEPTH OF
INVESTIGATION
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AZIMUTHAL LWD SONIC, SPECTRAL
GAMMA AND BULK DENSITY

LWD AZIMUTHAL GR, DENSITY & UNIPOLE
SONIC TRANSDUCERS SCAN 360° IN EACH
DRILL STRING ROTATION

MEASUREMENTS STORED IN 16 BINS
SPECTRAL GR, DENSITY & UNIPOLE SONIC
IMAGES GENERATED FOR THE LATERAL



Azimuthally Focused LWD Sonic

Combined With Wireline Crossed-dipole
Data from the Pilot Hole, the Azimuthal
LWD Sonic Furnishes an Accurate 3-D
Velocity Model for Compressional and
Shear Wawves

This is Used to Correct and Upgrade the
Seismic Interpretation and Helps in
Establishing Seismic Attributes



SWEET SPOTS AND WELL TRAJECTORY
ON SEISMIC SECTION

Max Tgas from mudlogs and initial o1l production is related mainly to
presence of faults and associated fractures (high-order geometries);
high-resolution coherency is detecting mainly high-angle faults.

Eagle Ford Reservoir Characterization from Multisource Data Integration*N. Basui, G. Barzolat, H. Bello1, P. Clarkel
and O. Viloriatl Search and Discovery Article #80234 (2012)



BENEFITS OF 16 AZIMUTHALLY
FOCUSSED MEASUREMENTS

a) 16 Radially spaced P & S Measurements

)

and corresponding Images along the
lateral

16 Radially spaced E and p§ computations
and corresponding Images along the
lateral

16 Radially spaced computations of
Brittleness and corresponding image
along the lateral
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Young's Modulus
Modulus of Elasticity

Stress/ Strain

Poisson’s Ratio
Lateral / Longitudinal Strain

“Squish/Squash”
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LWD AZIMUTHTAL UNIPOLE ACOUSTIC SUMMARY

GEOMECHANICAL DATA ALONG LATERAL LEADS
TO COST SAVINGS THROUGH SELECTIVE
STIMULATION

PROVIDES GEOLOGICAL & PETROPHYSICAL
DATA FOR UNDERSTANDING FACTORS
CONTROLLING VARIATION IN RATES FROM
STAGE TO STAGE



Technology Toolbox - 2008
Seismic - Missing the Target

Case Study

Well Out of Target &t

Pilot GR log

/1) Lateral planned entirely from pilot logs \
2) No 3D seismic used for well planning
3) No LWD data or Geo-steering (logs run thru-casing @ TD)

Lateral GR log

4) Cuttings/gas indicated mostly in Middle EGFD

= well 85% out of TARGET

@ TIGHT OIL

Could not place proppant (note high Frac Gradient)

Out of target

Courtesy Hall, ). D.: Tight Qil - Eagle Ford 2011 conference in Houston, August 30, 201




Droveoc oll Placeme ond Completio
Pilot GR log 4 Lessons Learned R
' 1) Geo-steer all wells in-house (LWD Gr)
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Conclusions

Hydraulic frac stage placement based on sweet
spots will
- Eliminate fracking into poor reservoir
intervals and concentrate on the Sweet
Spots
- Help in the design of proper frac
parameters

- Optimize frac efficiency and proppant
placement.

- Ultimately all of the above will lead to
reduced completion cost



Conclusions

Many approaches for sweet spot
identification are available to optimizing
fracs

GC Tracer, XRF/XRD & Pyrolysis on cuttings
offer a rapid, near real time approach for
mineralogy and hydrocarbon identification
LWD Azimuthal SGR & Sonic provide real
time data on TOC and Anisotropy





