Non-traditional Techniques for Microporosity Evaluation in a Low-Permeability Carbonate Reservoir From a Giant Reservoir Offshore Abu Dhabi, U.A.E*

Tiffany Dawn Jobe¹

Search and Discovery Article #41270 (2014)**
Posted February 11, 2014

*Adapted from oral presentation given at AAPG 2013 Annual Convention and Exhibition, Pittsburgh, Pennsylvania, May 19-22, 2013

¹Department of Geology & Geological Engineering, Colorado School of Mines, Golden, CO, USA (tjobe@mines.edu)

Abstract

Recently, matrix related microporosity has been recognized as an important control on transmissivity and storage capacity of hydrocarbons. With the advancement of completion technologies for low-permeability reservoirs, quantifying the matrix-related micro-porosity, understanding pore size and pore throat distributions as well as tortuosity has become increasingly important. Traditional methodologies for porosity characterization developed for conventional reservoirs are often inadequate for low permeability, microporous reservoirs. This study focuses on microporosity characterization in carbonate mudstones and wackestones. Low permeability core plugs from a Lower Cretaceous aged reservoir were evaluated and 5 distinct reservoir facies were identified based on detailed core and thin section description. Porosity is estimated for each lithofacies by petrographic image analysis as well as a new technique for porosity determination from QEMSCAN® (quantitative evaluation of minerals and porosity by scanning electron microscopy) analysis (Jobe et al 2013, in prep). Estimated porosities are compared to measured porosity from a CMS-300® (core measurement system) automated permeameter. Furthermore, porosity and pore throat distributions are determined by Mercury porosimetry and Nitrogen gas adsorption experiments in order to capture both micro- and nanopore distributions. A comparison of porosities from each analytical technique is presented. In addition to porosity, the permeability and specific surface areas are measured and tortuosities are calculated. Results of the study show distinct differences in porosity, permeability, surface area and tortuosity among the lithofacies, despite their seemingly similar mudstone to wackestone textures. Pore size distributions indicate bimodal pore distributions that are in the micro to nanoporosity range. In general the porosities reported from Mercury porosimetry, nitrogen gas adsorption and CMS-300® experiments agree with those determined by OEMSCAN® analysis, yet all are significantly higher than those reported by petrographic image analysis. This discrepancy indicates that there is a significant portion of micro- to nano- scale porosity not captured by traditional optical microscopy. Pore size and shape distributions, while different for each sample, agree qualitatively across all analytical techniques. Calculated tortuosities were also distinct for each sample; the samples with the most nanoporosity had the lowest tortuosities, while heterogeneous samples consistently had the highest tortuosities. The results of this microporosity evaluation indicate that each lithofacies has a unique set of values for porosity, pore size distribution and tortuosity. These parameters are what control fluid flow in the matrix and therefore the different lithofacies will have distinctly different fluid flow responses in a reservoir.

^{**}AAPG©2013 Serial rights given by author. For all other rights contact author directly.

References Cited

Granier, B., A.S. Al Suwaidi, R. Busnardo, S.K. Aziz, and R. Schroeder, 2003, New insight on the stratigraphy of the "Upper Thamama" in offshore Abu Dhabi (U.A.E.): Notebooks on Geology, p. 1-17.

Sharland, P.R., R. Archer, D.M. Casey, R.B. Davies, S.H. Hall, A.P. Heward, A.D. Horbury, and M.D. Simmons, 2001, Arabian Plate sequence stratigraphy: GeoArabia Special Publication, v. 2, 371 p.

Non-traditional Techniques for Microporosity Evaluation in a Low-Permeability Carbonate Reservoir From a Giant Reservoir Offshore Abu Dhabi, U.A.E.

Tiffany Dawn Jobe
Colorado School of Mines
Department of Geology & Geological Engineering

AAPG/SEPM Annual Meeting
Pittsburgh, PA
21 May 2013

Geologic Setting

Sharland, 2001

"Giant Oil Field Offshore Abu Dhabi"

Granier et al., 2003

Depositional Model

Coast Peritidal Zone	Proximal Inner Ramp Lagoon Shoal		Distal Inner Ramp	Mid-Ramp	Proximal Outer Ramp	Distal Outer Ramp				
						Fair-Weather Wave Base				
Depositional Low Water Energy & High	Low	High	Moderate to Low	Low	Low	Low				
Reservoir										
F7 - Fractured Rudis	t-Bivalve Wackesto	ne								
F6 - Burrowed Lithod	odium-Bacinella W	ackestone								
F5 - Lithocodium-Ba	cinella Boundstone		-							
F4 - Lithocodium-Ba	cinella Wackestone	to Packstone -		_						
F3 - Vuggy Rudist-Bi	valve Wackestone	to Packstone -	-							
Non-Resevoir										
F8 - Dense Rudist-B	ivalve Wackestone				-					
F2 - Dark Argillaceou	F2 - Dark Argillaceous Orbitolinid Packstone									
F1 - Nodular Bedded	Orbitolinid Wackes	stone to Packst	one – – – – –							

Microporosity

Necessitates the use of nontraditional techniques for microporosity evaluation

Data Set

5 lime mud dominated lithofacies ranging from vuggy wackestones to tight mud/wackestones

QEMSCAN®-BSE mode

QEMSCAN-BSE mode

			ОМ	QEMSCAN – BSE only				
Sample	Rock Fabric	Dominant Pore Type	Porosity %	Porosity % Pore – Mineral Transition %		Max Porosity %		
F3	Rudist Wackestone	Inter/Intraparticle, moldic/shelter, Macro to Micropores	4.4	10.8	7.5	18.3		

QEMSCAN® vs PIA

QEMSCAN-BSE mode

Pore size										
<5	5-10	10-20	20-50	50-70	>70					
	##UNJERFYZE ##EPR/#EU-ERIM ##PPR/###EPR/# ###################################		* YA							
19.55	2 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	はなるないとなる なからないとう からない ないない ないない ないない ないない かいない これから はない ないない ないない ないない ないとう ないとう ないとう ないかい ないない ないない ないない ないない ないない ないない ないな	大学 はなるななから あかからかとない あかれるかななかか。 あかれるがなかない	43)						
Thurst installed in the state of the state o	And soft of money by the event of events of the form of an event of events of the form of an event of events of events of a sec- condition of events of a sec- tion of events of events of a sec- ent and events of events of a sec- tion of events of events of events of events of events of	The state of the s		Sylvania de la companya de la compan						
A CONTROL OF THE STATE OF THE S										
			7.00							

		Pore Size Distribution (Volume %)								
Sample	Rock Fabric		< 5 μm	5 - 10 μm	10 - 20 μm	20 - 50 μm	50 - 70 μm	> 70 µm		
		60								
		50								
	Rudist	40								
F3	Wackestone	3 0	20.4	19.6				23.4		
		20	20.4	19.0	13.2	17.4				
		10					6			
		0								
		60 50								
	r Ideas Person	40		41.6						
F4	Lithocodium -Bacinella	30			26.4					
	Wackestone	20	20							
		10				9.5				
		0					1.4	1.1		
	Lithocodium -Bacinella Boundstone	60								
		50								
		40								
F5a		30		20.8	18.2			26.6		
		20	15.4		18.2	15.5				
		10					3.5			
		60				_				
	Lithocodium	50								
		40	33.4	39.1						
F5b	-Bacinella	30	33.4							
	Boundstone	20			17.6					
		10				7.8	2.1			
		0					2.1	0		
		60		58.6						
		50								
F6	Bioclastic	40								
	Wackestone	30			23.6					
		20	15.5							
		10				2.2	0.1	0		
		0						_		

Implications

- Rapid, quantitative data
- Images features at a sub-micron scale
- More reliable than traditional point counts
- Pore size and shape analysis possible
- Reserves calculations total storage capacity
- Microporous mudrock characterization
- Can we validate these values independently?

Sample Preparation

Mercury Porosimetry, CMS 300 and N₂ Gas Absorption experiments require cleaned, dried and degassed samples.

Core plugs were flushed with Toluene via soxhlet for approximately 150 hours to remove residual hydrocarbon

Mercury Porosimetry

Mercury Porosimetry

N₂ Gas Adsorption

N₂ Gas Adsorption

Porosity Comparison

Facies	Petrographic		phic CMS 300 QEMSCAN-BSE			Hg	N2	Hg +	Tortuosity
		Image Analysis		Porosity	Max Porosity			N2	τ
F3	Vuggy R. B. Wacke- to packstone	4.4	19.1	10.8	18.3	17.5	0.48	18.0	2.701
F4	Stylolitic L.B. Mud- to Wackestone	1.3	21.8	9.6	21.6	18.0	1.43	19.4	2.495
F5a	Lithocodium Bacinella Boundstone	2.1	17.6	6.7	13.2	15.6	1.0	16.6	2.839
F5b	Lithocodium Bacinella Boundstone	0.9	17.0	5.8	16.6	12.5	1.21	13.7	2.894
F6	Dolomitic Burrowed L.B. Wackestone	NVP	23.7	13.2	32.6	27.1	1.28	28.4	2.363
F7	Fractured R.B. Wackestone	NVP	20.8	12.0	28.2	22.7	1.65	24.4	2.564

Pore Architecture

Vuggy Rudist Wackestone

Porosity = 18-19%, Tortuosity = 2.701

Bioclastic wackestone (dolomitic burrows)

Porosity = 23-32%, Tortuosity = 2.363

	Wing	MALE.	31 A 3		AL HOME	19 TH, 10	The second	REPORT OF STREET	2007-0
		Pore Size Distribution (Volume %)							
Sample	Rock Fabric		< 5 μm	5 - 10 μm	10 - 20 μm	20 - 50 μm	50 - 70 μm	> 70 μm	
F3	Rudist Wackestone	60 50 40 30 20 10	20.4	19.6	13.2	17.4	6	23,4	Different al Instrusion (mL/g/um)
F4	Lithocodium -Bacinella Wackestone		20	41.6	26.4	9.5	1.4	1.1	Different al
F5a	Lithocodium -Bacinella Boundstone	60 50 40 30 20 10	15.4	20.8	18.2	15.5	3.5	26.6	ŀ
F5b	Lithocodium -Bacinella Boundstone	60 50 40 30 20 10	33.4	39.1	17.6	7.8	2.1	0	d'/dlog(w) Pore Volume (cm²/g)
F6	Bioclastic Wackestone	50 40 30 20	15.5	58.6	23.6	2.2	0.1	0	dy/dlog

Summary

- QEMSCAN technology is a rapid analysis tool capable of high resolution microporosity quantification.
- Mercury porosimetry and gas absorption experiments are able to validate the high porosity values reported by QEMSCAN porosity mapping
- Porosity estimates from all techniques indicate a significant amount of storage capacity (~20%) within the micro to nanopores.
- Pore size distributions at a variety of scales show similar trends across all analytical techniques and are able to capture relative heterogeneity in the samples.