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Abstract

Advances over the last several years in seismic acquisition (wide azimuth, rich azimuth, and coil shooting) and processing (reverse time
migration and full waveform inversion) have led to increased recognition of encased secondary minibasins in the central Deepwater Gulf of
Mexico. An understanding of the spatial and temporal distribution and development of encased minibasins expands our regional understanding
of salt tectonics and salt-sediment dynamics and may provide new exploration targets. Encased basins form when allochthonous salt flows
completely over the top of the minibasin during times of low deposition relative to the adjacent salt inflation. Two types of encased basins are
recognized: (1) Basins overridden by salt early in their development, in which encasement occurs long before welding at the base or sides of
the basin; these basins appear to have subsided or capsized within an inflating salt canopy, with some subsiding into an open diapir or having a
younger basin stacked on top, and (2) Basins overridden by salt late in their development, in which encasement occurs near or after the time of
welding at the base or sides of the basin; these basins do not appear to have capsized or subsided significantly into the salt and were instead
encased by salt evacuating from beneath neighboring subsiding basins. Secondary basins deposited during the Miocene in the central Gulf of
Mexico were prone to encasement in the Early Pliocene. Basins encased in the Pleistocene are observed, but appear to be less common. Wells
penetrating encased basin section in the central Gulf of Mexico have encountered a variety of circumstances such as thick wet sands,
unexpectedly young section, or steep dips. Many of these wells were drilled prior to imaging advances and were thus poorly positioned relative
to prospective closures. The recognition of the presence and widespread distribution of encased basins enhanced depth imaging of adjacent
primary section exploration targets by including the properties of the encased basin section into velocity models.
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beneath neighboring subsiding basins. Secondary basins deposited during the Miocene in the central Gulf of Mexico were prone to
encasement in the Early Pliocene. Basins encased in the Pleistocene are observed, but appear to be less common. Wells penetrating
encased basin section in the central Gulf of Mexico have encountered a variety of scenarios such as various lithologies, ages, and dips.
Many of these wells were drilled prior to recent imaging advances and were thus poorly positioned relative to prospective closures. The
recognition of the presence and widespread distribution of encased basins has enhanced depth imaging of adjacent primary section M
exploration targets by incorporating the properties of the encased basin section into velocity models.
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Introduction . e

A continuum of sediment exists that can become encased in salt canopies and feeders ranging from smaller suture related inclusions, to
diapir roof and carapace sections of various thicknesses, to entire minibasins (e.g., Pilcher et al. 2011; Rowan and Inman, 2011; Dooley
et al., 2012). Itis the purpose of this investigation to describe encased basins that formed through normal minibasin depositional
processes and are of significant thickness. Even within this definition, large variations in geometries, weld characteristics, and relative
timing of encasement versus foundering are observed.
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