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Abstract

Tight-gas sandstone reservoirs of the Upper Cretaceous Mesaverde Group in the Greater Natural Buttes (GNB) Field have
variable fluid saturations along with low matrix porosity and permeability. In order to build more reliable saturation models, it
is significant to determine resistivity of formation water, which is one of the input parameters in water saturation calculations.
This study mainly investigates how formation water resistivity and salinity vary stratigraphically and spatially. For
petrophysical analysis, the study interval was divided into seven stratigraphic zones based on net-to-gross ratio and variation
in resistivity. Formation water resistivity derived from Pickett-plot analysis was used with formation temperature to determine
formation water salinity distribution per zone. Temperature data from production logs show that the Wasatch Formation and
Mesaverde Group have higher geothermal gradients than formations that are stratigraphically above. Therefore, formation
temperature was estimated using these gradients, which are consistent through the study interval. Petrophysical analysis
indicates more fresh water is present in the western part of the study area coinciding with the trace of a basement fault. Salinity
decreases stratigraphically downward while water saturation is variable within the study interval. Average formation water
resistivity per zone ranges between 0.048 ohm-m to 0.064 ohm-m based on Pickett- plot analysis, while average formation
water salinity per zone ranges between 55,000 ppm to 86,000 ppm. Furthermore, the average effective bulk-volume water is
nearly constant around 3.5% suggesting that as being a basin-centered gas accumulation, most sandstones within the study
interval are close to irreducible water saturation. A combination of different geological mechanisms might account for
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observed salinity variations. The increase in freshness stratigraphically downward may be due to basement faulting and
associated natural fracture system enhancing upward movement of fresher formation water. In addition, coal and sediment
dewatering in stratigraphic units below study interval might be the source of fresher formation water in this potentially closed
hydrological system, whereas distinct horizontal layering and continuity of different petrophysical rock types might result in
observed salinity trends in the area.
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Research Questions

1. How does formation water salinity vary stratigraphically and spatially?

2.  What interaction of mechanisms (e.g. faults) can result in variation of formation

water salinity?

3.  What is the spatial distribution of the highest reservoir quality rock type and its

relation to salinity variation?



Stratigraphy
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Depositional Setting

TR
o3 \1(\ \

Piedmont

Alluvial Plain

Coastal Plain_ I | I

(Cole, 2005; White et al., 2008)



Petrophysical Workflow




Log Normalization
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Archie’s Equation

(Archie, 1942)

w = [(5) G

Sw: Water saturation

@: Porosity

Rw: Formation water resistivity

Rt: Resistivity of the sand

a: Tortuosity factor

m: Cementation factor (varies around 2)

n: Saturation exponent (generally 2)




Pickett-plot

Analysis
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Pickett-plot Analysis

Pickett Plot for the zone UBI1
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Temperature Data

Common approach: Temperature is recorded at the bottom of the well (max recorded temperature), and it is

assumed that the geothermal gradient is constant.

Temperature

Depth

Bottom hole temperature
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Temperature Data

WTEP vs Depth
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Salinity Calculations

Salinity is both function of formation water resistivity
and temperature.

Salinities were calculated using Crain’s equation
(2010), and average salinities were mapped for each

zone separately.
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Petrophysical Workflow

Log Normalization

v
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Conceptual Petrophysical Model
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VSH Log from GR Log
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VCL from Neutron-Density Crossplot
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Final VCL Curve
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Petrophysical Workflow

Log Normalization
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Water Saturation Calculations

XRD Data

(Courtesy of Anadarko Petr. Corp.)
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Petrophysical Workflow

Log Normalization
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Petrophysical Rock Types

Rock Typing . Petrophysical rock types were divided

-+ > . .
potential reservoir rock into five Category-

Rx1 . Rock typing is based on pore throat

Rx2

radius measurements and rock quality

RQl

index

R35 microns RQI - porosity/ permeability relationship

(Courtesy of Anadarko Petr. Corp.)



Petrophysical Rock Types

RX1

RX2

RX3

RX4
RX5

Examples

Structureless sandstone,
cross-bedded sandstone

Planar-laminated sandstone

Ripple cross-bedded
sandstone, mottled
sandstone

Mudstone

Mudstone, Coal (rarely)




Results: Average Salinity Distribution

Between 55,200 - 86,350 ppm
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Petrophysical Rock Type Distribution
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Vertical Salinity Profile
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Average Bulk-volume Water
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Combination of Different Geological Mechanisms

Sediment and coal dewatering; water expulsion

from the Mancos Shale

Castlegate Sandstone is leaky along the
basement fault, and has a connection with
meteoric water, causing the upward movement of

fresher formation water.

Evaporites in Green River Formation, their

connection with meteoric water
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Conclusions

. Petrophysical analysis indicates more fresh water is present in the western part of the

study area, while salinity increases stratigraphically upward.

. The average formation water salinity ranges between 55,200 ppm to 86,350 ppm based on a

log-derived methodology.

. A combination of multiple mechanisms; basement faulting, coal and sediment dewatering,

and rock type distribution might have an effect upon salinity trends in the area.
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