Vein Structures And Intrastratal Microfractured Zones Interpreted In Cores Of Late Miocene Diatomite, Midway Sunset Field, California*

Bonnie Bloeser¹ and Mary Nelis²

Search and Discovery Article #20263 (2014)**
Posted August 11, 2014

*Adapted from oral presentation given at Pacific Section AAPG, SEG and SEPM Joint Technical Conference, Bakersfield, California, April 27-30, 2014
**AAPG©2014 Serial rights given by author. For all other rights contact author directly.

¹Aera Energy LLC, Bakersfield, CA
²Core Laboratories, Houston, TX (mary.nelis@corelab.com)

Abstract

Silty diatomaceous mudrock from the Belridge Diatomite Member, Reef Ridge Shale, Monterey Formation preserve small-scale veins and microfaults. This study compares vein, fracture, and fault geometry and mineralogy from four whole cores of argillaceous diatomite in Midway Sunset Field to what has been described in both outcrop and modern offshore diatomaceous sediments. Thin section petrography using both standard and reflected ultraviolet light was combined with scanning electron microscopy (SEM) on standard and argon ion-milled samples to document the microfabrics, fracture styles, mineralogy and paragenesis of events. Formation and evolution of vein structures as fluid escape features, and microfault development at vein sites, is reported in diatomaceous muds cored from active margins during the Ocean Drilling Program and Deep Sea Drilling Project. A diffuse type of vein structure observed in the core of Miocene diatomite compares well with what are termed ‘ghost veins’ in modern offshore Peru sediments, which develop preferentially in more diatom rich laminae. Preservation of primary vein networks, grain alignment, and fill mineralogy observed in the cores of Miocene diatomite are relict signatures of fluid expulsion that occurred early in the unconsolidated diatom ooze lamina within diatomaceous muds. The sigmoidal en echelon tension gash fracture sets are recognized in whole core by their distinct geometry, darker color, and reduced porosity and permeability relative to the surrounding matrix. They form subparallel en-echelon arrays whose terminal projections are aligned along common bedding planes or other distinct geomechanical boundaries. In SEM, the material within tension gash structures, relative to the surrounding diatomite, is composed of highly comminuted diatom fragments and minor clay and organic material. Multiple crosscutting sets of ‘ghost veins’ and en echelon structures are observed. Both features are observed in finely laminated diatomites as well as in more thickly bedded intervals and their manifestations vary with the clay content of the bed. Vein structures, fracture styles and their relationship from observations in the cores of Miocene diatomite of the Midway Sunset Field supports outcrop- and modern sediment-based interpretations that syn-sedimentary to early post-depositional downslope movement of highly porous and low permeability, organic-rich sediments drives their formation.
Selected References

Vein Structures and Intrastratal Microfractured Zones Interpreted in Cores of Late Miocene Diatomite, Midway Sunset Field, CA –

Why a macro and microscopic evaluation of rock properties is paramount for an integrated geologic and engineering understanding of opal-A diatomite

Bonnie Bloeser, Aera Energy LLC and Mary Nelis, Core Laboratories
Pacific Section AAPG, Bakersfield
April 28, 2014
Veins are defined as < 2 mm mud-filled features that crosscut bedding, commonly at a high angle, with no visible offset (Arthur et al., 1980; Carson et al., 1982)

Veins are Synsedimentary fractures and are faults (veins offset bedding)

They are planar, curviplanar, irregular or anastomosing; darker in coloration and finer grained than the host sediment (Lindsley-Griffin et al., 1990)

Disaggregation and grain boundary sliding is an important processes in vein development (Knipe, 1986)

Oligocene to Pleistocene diatomaceous mudrock cores from DSDP and ODP legs in active margins during the 1980s-1990s (Ogawa and Miyata, 1985; Knipe, 1986; Lundberg and Moore, 1986)

• deformation and tectonics in active margins
• how natural fracture systems control hydraulically induced fracture stimulation treatments

“IMZs are a hybrid fault/vein structure that are stratally bounded by undeformed sediments” (Grimm and Orange, 1997)

Opal-A, opal-CT and chert reservoirs of the Monterey Fm. contain natural fractures

Hydraulic fracture stimulation treatments induce fractures

• What is the relationship between natural and induced fractures?
• How might this understanding provide insights into thermal pilot programs, full field development and in helping to solve engineering concerns of steam breakthrough, sweep efficiency, steam conformance, well failures and other reservoir and production engineering concerns?
DSDP Legs in active margins
Vein descriptions and formation

DSDP Leg 84, Middle America Trench, Guatemala, Ogawa and Miyata, 1985

Intrastratal Microfractured zones (IMZ), Monterey Fm., Grimm and Orange, 1997

DSDP Leg 57, Japan Trench, Knipe, 1986

Parallel sets of planar to curviplanar, en-echelon seams that bifurcate into distributary networks. Various terms include: tension gash arrays, veins, stratal disruption, spaced foliation, kink bands, crenulation folds, web structures, cataclastic fabrics, scaly foliation, web structure and microstructural domains
Vein structures of the Peru Margin, Leg 112, Sites 679-688, mid-upper slope to inner shelf, Late Miocene - Quaternary

Lindsley-Griffin et al., 1990

Veins form during sediment dewatering, initiated by diatom frustule collapse during compaction and by overloading during downslope slumping.

Vein sets and arrays
- Preferred orientation of particles parallel to vein walls
- Trains of particles (silt and diatom fragments) are subparallel to sharply defined walls
Where is this fracture study?
Midway-Sunset Field, San Joaquin Basin, CA.

- Late Miocene oceanographic and climatic conditions controlled deposition of hemipelagic sediment in slope deposits of forearc basins

- Argillaceous biosiliceous sediment, in mid-to lower slope settings, developed a highly complex vein network as a result of sediment dewatering, mass wasting and tectonic episodes
Opal-A diatomite vein studies, south MWSS

- Opal-A diatomite is a mechanically and lithologically varied highly fractured biosiliceous mudrock
- Natural fracture systems are weak planes that reactivate during induced treatments
- Exchange of ideas and understandings of fracture properties between engineering, geological and petrophysical staff is critical to insure that a synergy of knowledge exists

(Gregory, G.J., in Nilsen et al., 1996)
Veins are fractures and faults
Variable vein dip and azimuth

- Veins develop in response to sediment dewatering and slope instability
- Veins exhibit shear and extensional features
- Veins are sealed with finer grained matrix, darker in color, reduced porosity
- Veins are normal to subnormal to bedding
 - Bedding dip N 45.59°E; azimuth 26.29°
 - Fracture dip N 50.16°; azimuth 186.16° (vector mean from FMI log)
- Vein styles:
 - Tension gash arrays (TGAs)
 - Single discrete and wide
 - As extensional microfaults
 - As larger scale fold complexes in jointed matrix
- Vein fill is not hydrocarbon charged
- Intra-vein and vein parallel open fractures are zones of weakness
Core and corresponding log gamma ray (GR) curves - Matrix mineralogy influences the development of natural fractures

Vein fracture and fault geometry, occurrence and frequency is a function of lithofacies

Low GR = less clay
High GR = more clay

Bioturbation, high GR
TGAs, discrete veins, stacked IMZs (A), normal to subnormal to bedding. Vein microfaults, offsets are along closely spaced veins (B)
CT scans combine a series of X-ray views taken from many different angles to create cross-sectional images.

3-D images are used in vein mapping.
Branched and anastomosing vein structure
particle capture from underlying coarser grained lamina into vein

left stepping open fractures; likely natural
Branched vein habit – veins influence sedimentary microfabrics

- Sediment flushing and upward particulate mass transport of particles during sediment dewatering
- Subvertical particle realignment within veins
- Rounded to subrounded shape of diatom and silt particles within veins

- “Streaming” of particles into vein from underlying lamina (B) and from side branches
- Plane polarized light distinguishes diatom frustules and silt from the matrix clay fraction
Branched veins

- Veins are faults, note offset
- Vein boundaries are often sharp
- Open fractures at bed boundaries
- Fining upward sequences
Impregnated silty diatomaceous mud shows evidence for upward mass transport related to upward of fluid migration in vein structures. (Kemp, 1990)

- Wide vein is younger than adjacent thin vein oriented sub vertical; offset noted by arrows
- Thin vein is a fault that cuts bedding
- "Train" of single particle grains in thinner vein
- Particle reorientation subparallel to vein wall in large vein

"Impregnated silty diatomaceous mud shows evidence for upward mass transport related to upward of fluid migration in vein structures." (Kemp, 1990)
Vein fill and matrix mineralogy

<table>
<thead>
<tr>
<th>Sample</th>
<th>Identity</th>
<th>Depth (ft)</th>
<th>CLAYS</th>
<th>CARBONATES</th>
<th>OTHER MINERALS</th>
<th>TOTALS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chlorite</td>
<td>Kaolinite</td>
<td>Illite/Mica</td>
<td>Mx IS*</td>
</tr>
<tr>
<td>Vein Fill</td>
<td>833.75</td>
<td>1</td>
<td>Tr</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Microfault Fill</td>
<td>833.75</td>
<td>1</td>
<td>Tr</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Matrix</td>
<td>833.75</td>
<td>1</td>
<td>Tr</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

* Due to low clay amount and high amorphous content, unable to calculate the expandability of interstratified mixed-layer illite/smectite.

1 Dolomite species interpretation based on the d-spacing of the highest intensity peak of dolomite group minerals (which increases with calcium in excess of 50:50 Ca:Mg or substitution of Fe for Mg).

2 X-Ray Diffraction pattern indicates the presence of amorphous material—Bruker TOPAS was used to estimate the amorphous content based on the background of the diffraction pattern. Thin section and SEM analyses indicate the amorphous material is predominately diatomaceous Opal A.
Vein and matrix

- Similar mineralogy
- Reduced porosity in vein
- Iron oxide red-brown coloration in veins
- Reorientation of particles in vein
- Open fractures develop along vein boundaries
Vein and matrix
Particle realignment in vein, fluid flow streaming
Moco 35D-303A, 754', SEM
Conductive fractures are subnormal to bedding and intersect at high angles
Fracture dip vector mean 50.16°, azimuth vector mean 186.16°
Fisher statistics

Vector Mean

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bedding</td>
<td></td>
</tr>
<tr>
<td>Dip</td>
<td>45.59</td>
</tr>
<tr>
<td>Azimuth</td>
<td>26.29</td>
</tr>
<tr>
<td>Fracture</td>
<td></td>
</tr>
<tr>
<td>Dip</td>
<td>50.16</td>
</tr>
<tr>
<td>Azimuth</td>
<td>186.16</td>
</tr>
<tr>
<td>Fault</td>
<td></td>
</tr>
<tr>
<td>Dip</td>
<td>36.30</td>
</tr>
<tr>
<td>Azimuth</td>
<td>183.73</td>
</tr>
</tbody>
</table>

Bedding dip stereonet

674'-1036' – diatomite interval

Well Name: MOCO 35 D-192

Rose bin size: 15.0°

Rose rim value: Auto

Azimuth Plot

N = 55
Fisher statistics
Vector Mean

Bedding
Dip Azimuth
45.59 26.29

Fracture
Dip Azimuth
50.16 186.16

Fault
Dip Azimuth
36.30 183.73

Fracture dip stereonet
674’-1036’ – diatomite interval
Fisher statistics
Vector Mean

Bedding
Dip: 45.59
Azimuth: 26.29

Fracture
Dip: 50.16
Azimuth: 186.16

Fault
Dip: 36.30
Azimuth: 183.73

All Data: Bedding, fractures, fault dip stereonet
674’-1036’ – diatomite interval
Direct measurement of critical fracture parameters:
- Hydraulic fracture azimuth and dip
- Fracture volume and location of fracture center
- Fracture complexity (multi-planar growth, fracture twisting, etc.)

Stage A (Main Frac)
- Vertical fracture azimuth is N34°E
- Dipping 90° (vertical)
- 36% horizontal fracture component
- Fracture top 660 ft
Fracture Orientation Results
Moco 35D-192

<table>
<thead>
<tr>
<th>Stage</th>
<th>Treatment Data/Time</th>
<th>Perf Interval (ft)</th>
<th>Azimuth</th>
<th>Dip</th>
<th>Vertical Component</th>
<th>Horizontal Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage A Injection Test</td>
<td>4/12/2013 (9:19 – 9:28)</td>
<td>740 - 890</td>
<td>N 34° E ±2°</td>
<td>87° ±2° down SE</td>
<td>60%</td>
<td>40%</td>
</tr>
<tr>
<td>Stage A Main Frac</td>
<td>4/12/2013 (10:32 – 10:39) End of Pad</td>
<td>740 - 890</td>
<td>N 33° E</td>
<td>87° ± down SE</td>
<td>62%</td>
<td>38%</td>
</tr>
<tr>
<td></td>
<td>4/12/2013 (10:32 – 10:46) End 2 ppg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage A Main Frac</td>
<td>4/12/2013 (10:32 – 11:08) End 6 ppg</td>
<td>740 - 890</td>
<td>N 35° E</td>
<td>89° ± down SE</td>
<td>60%</td>
<td>40%</td>
</tr>
<tr>
<td></td>
<td>4/12/2013 (10:32 – 11:22) End of Job</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Induced fractures propagate at a higher dip angle (70-80°) compared to FMI log derived dip; induced fractures are more closely aligned to the upper natural fracture sets.
Special Thanks

The authors wish to thank the supportive management of Aera Energy LLC and Core Laboratories

Aera Energy
Ralph Coldeway
Lauren Gentile
Tom Hampton
Tyler Rowley
Dallon Stang
Alfredo Urdaneta

Dr. Robert Horton, California State University, Bakersfield