A Comprehensive Geochemical and Petrophysical Integration Study for the Permian Basin*

Michael Holmes¹ and Michael Dolan²

Search and Discovery Article #10652 (2014)**
Posted October 27, 2014

*Adapted from oral presentation given at the Geoscience Technology Workshop, Permian and Midland Basin New Technologies, Houston, Texas, September 4-5, 2014
**AAPG©2014 Serial rights given by author. For all other rights contact author directly.

¹Digital Formation Inc., Denver, CO, USA (michael.holmes@digitalformation.com)
²Dolan Integration Group, Boulder, CO, USA

Abstract

This project encompasses the integration of petrophysical and geochemical analyses of source rocks reservoirs of major importance in the Greater Permian Basin. As available, geochemical data have provided the ability to make maturity, richness and other source character interpretations and will be combined with important petrophysical properties of the shale intervals to predict multiple reservoir and mechanical properties. These interpretations will provide the opportunity to support economic, development and production decisions in the geologic workflow. Best practices for sampling shale intervals, wireline testing, database and interpretive processes will be investigated. Data compilation, project planning will be provided in the first phase of the study followed geochemical and petrophysical analysis of collected data. The final report will provide the following objectives:

1) Develop workflows for accurate pre-drill predictions of petrophysical parameters, organic richness, maturity modeling and geochemical analyses of the DJ Basin.
2) Integrate acquired data with established rock and fluids database. Acquire wireline log data, core and mud log data. Acquire geochemical rock and fluids data. Also, access any public seismic data, especially 3-D interpretation data.
3) Produce highly detailed reservoir quality and geochemical prediction maps. Perform detailed petrophysical analysis. Compare with core and mud log data. Incorporate geochemical data, primarily TOC.
 a) TOC Prediction Maps
 b) Vitrinite Reflectance Equivalence (VRE) Maps
 c) Fluid Type and quality including Gas to Oil Ratio Prediction Maps
4) Map petrophysical reservoir property variation by formation including:
 a) In place hydrocarbons
 b) Fracture intensity
 c) Mechanical properties (brittle vs. ductile) and compare with any available seismic interpretations
 d) Petrophysical properties of the shale interval
e) Integrate petrophysics with geochemistry
5) Develop geochemical baselines and apply geochemical analyses to understand reservoir quality, reservoir fluid communication and compartmentalization specific to the basins studied.
6) Design safe and cost-efficient geochemical sampling techniques for acquiring the critical data types.
 a) Data designed to support development and production decisions.
 b) Develop criteria for sampling time and location best practices.
7) Establish best practices for managing geochemical data libraries to ensure their security, accessibility and future value.
A Comprehensive Geochemical and Petrophysical Integration Study for the Permian Basin

AAPG Launcher Program, Sept. 4 – 5, Houston, TX
Digital Formation, Denver, Colorado, 2014
List of Contents

• Overview of Geology and Geochemistry of the Permian Basin – Example
 ▫ Stratigraphy
 ▫ Structure
 ▫ Temperature Gradient
 ▫ Maturity

• Petrophysical Modeling – Data Available (examples from San Andres)
 ▫ Pre 1970 log suite
 ▫ 1970 log suite
 ▫ Modern Standard open-hole log suite
• Petrophysical Models
 ▫ Standard shaley formation
 ▫ Fractures from standard open-hole logs
 ▫ Relative permeability
 ▫ Rock physics/mechanical properties
 ▫ Unconventional reservoirs – integrated Geochemistry and Petrophysics
Permian Basin

Midland Basin

Delaware Basin

CBP
Permian Basin Stratigraphy (from USGS, 1995)

Maturity Models
Temperature Gradient Uncorr. (F./100’)

Tgrad_wells
tgrad_uncorr_cont
Tgrad_uncorr.asc
Value
High : 1.68008
Low : 0.739108
County Areas
ModelArea
Delawarebasin
State
International
Coastline
Miles
0 10 20 40 60 80
Presidio
Jeff Davis
Midland
Crockett
Brewster
Terrell
Val Verde
Pecos
Otero
Presidio
Torrance
Guadalupe
Lincoln
Otero
Hudspeth
Brewster
Terrell
Val Verde
Pecos
Otero
Presidio
Torrance
Guadalupe
Lincoln
Otero
Hudspeth
Brewster
Terrell
Val Verde
Pecos
Otero
Presidio
Top Wolfcamp Maturity

Integrating:
• Structure Maps
• Thermal History
• Rock Lithology
• Erosion
• Heat Flow Data
• Temperature Gradient
• Maturity Data

Make sure that your geological mechanisms are reasonable.

This is a Quick Start, not the end of the work!
Discussion

• The combination of variation in temperature gradient trends and erosion results in maturity trends which are significantly different than trends of present day structure in the Permian Basin.

• These modeled maturity maps tie the available calibration control quite well but it should be understood that the inputs such as temperature gradient, structure and estimated erosion have a range of uncertainty. These maps thus show regional trends and not fine detail over such a large area.

• The modeled maturity maps can be used to distinguish areas of oil Vs gas for various source intervals and can be used as a tool to generate new insitu oil and gas plays.
Conclusions

- Regional Maturity Maps allow for comprehensive integration of geochemical data sets.
 - Speed and rigor are your objective.
 - Project planning will keep your effort on track.
 - What are your Objectives?

Products
- Quickly integrate existing knowledge base
- Comprehensive review of what is known and that which needs upgraded understanding.
- Make Integrated Interpretations
- Predict Risk Spatially
- Important Development decisions can benefit from spatial analysis.
Petrophysical Modeling – Data Available (examples from San Andres)

• Pre 1970 log suite
 ▫ **Gamma Ray Neutron (neutron in counts)**
 • Need to convert counts to porosity, which requires estimates of porosity in tight clean formation, and porosity in shales. Best to choose from nearby well with a modern neutron log.
 ▫ **Normal and lateral resistivity devices.**
 • They can be used as a measurement of true resistivity. Resistivity modeling, based on GRI logic will correct (as far as possible) to give more accurate resistivity.
 ▫ **Standard petrophysical analysis of porosity and water saturation is possible.** More advanced modeling cannot be done.
1970’s Log Suite

- Gamma Ray Log
- Density log
- Neutron log – in porosity units
- Focused resistivity logs
- Acoustic compressional log
- Standard petrophysical analysis is easier to implement because neutron logs are in porosity units and resistivity logs give more accurate true resistivity. Additionally, lithologic data and direct gas indicators are available from density/neutron comparison.
Modern Log Suites

- Addition of the Pe curve gives much more accurate lithology information, particularly in carbonate reservoirs.
- If dipole sonic devices exist, accurate calculations of mechanical properties can be made. In the absence of acoustic data, good estimates of mechanical properties are available by running a rock physics model to generate pseudo curves.
- Nuclear magnetic resonance and image logs afford additional petrophysical models.
Petrophysical Models

- In the following discussions an example from a modern San Andres well is used to illustrate procedures
- Similar models can be developed for all other formations
Standard Formation Analysis

Good comparison log/core
Fracture Analysis

- Based on rates of change of curve magnitude with depth. Rapid change to high porosity interpreted as an open fractures and to low porosity, as closed (cemented) fracture.

Green = Open Fractures
Blue = Closed Fractures

Individual Log Responses
Stacked Data
Procedure 4 - Relative Permeability Model

- Solve the Corey relation
 - \(S_{we} = \frac{S_w - S_{wi}}{1 - S_{wi}} \)
 - \(K_{rw} = S_{we}^4 \) \hspace{1cm} Water
 - \(K_{rh} = (1 - S_{we})^2(1 - S_{we}^2) \) \hspace{1cm} Hydrocarbons

Buckles Relation
- \(\text{Phie} \times S_{wi} = \text{Constant} \)

Holmes Adaptation
- \(\text{Phie}^Q \times S_{wi} = \text{Constant} \)
- Slope = \(Q \)

Active Filter: VSH < 0.75

Intercept: 0.002
Slope: 1.743
Relative Permeability

Reservoir Components

Bulk Fluid Volumes

Relative Permeability

Effective Permeability

Sw – Swi

Pay

Water Oil Ratios

WOR

Top SA Porosity-G
Top SOR #1
Top SOR #2
Base Reliable Logs
Top SAN Andres
Top Free Water-P

Res. Comp. Volume Shale

Effective Porosity

Hydrocarbons

FREE Water

CP Bound Water

Shale

CORE K_US

30 %

Hydrocarbons

FREE Water

CP Bound Water

Fracture Water

Fracture Oil

Water Oil Ratios

WOR

Perm

0.00001 MD

Core K US

0.00001 md

Effective Perm

KEFF_OIL_ESTIMATE

0.00001

1000

KEFF_WATER_ESTIMATE

0.00001

1000

KRO_ESTIMATE

0.001

unkn

KRW Estimate

0.001

1

unkn

Water Oil Ratios

WOR

0.00001

unkn

Top SA Porosity

Top SOR #1
Top SOR #2
Base Reliable Logs
Top SAN Andres
Top Free Water-P
Procedure 5 - Rock Physics Model and Mechanical Properties - Brittle vs. Ductile

- To calculate mechanical properties, the following measurements are required
 - Acoustic compressional
 - Acoustic shear
 - Density

- Often acoustic shear is not available but can be estimated from other logs. The San Andres example shows pseudo curves based on the Krief geophysical model (Dipole Sonic not run).
Dipole Sonic Example from Kansas

Components

<table>
<thead>
<tr>
<th>Porosity</th>
<th>Oil</th>
<th>Water</th>
<th>Shale</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4 V/V</td>
<td>0.4 V/V</td>
<td>0.4 V/V</td>
<td>0 V/V</td>
</tr>
</tbody>
</table>

Caliper

| Caliper | 15 | 30 in |

Density/Neutron

<table>
<thead>
<tr>
<th>RhoB DS</th>
<th>Density Correction</th>
<th>NPhi L DS</th>
<th>DT DS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8 g/cc</td>
<td>–0.75 g/cc</td>
<td>0.45 V/V</td>
<td>200 uspf</td>
</tr>
</tbody>
</table>

Implied Gas Effect

<table>
<thead>
<tr>
<th>Pseudo Acoustic-Comp</th>
<th>DT DS</th>
<th>DTP WETO</th>
<th>KF DTP WETO</th>
<th>KF DTP 800</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 uspf</td>
<td>30</td>
<td>200 usf</td>
<td>30</td>
<td>300 usf</td>
</tr>
</tbody>
</table>

Ratios

<table>
<thead>
<tr>
<th>RATIOACCTAHIALDSOT</th>
<th>DT DS</th>
<th>DTP WETO</th>
<th>KF DTP WETO</th>
<th>KF DTP 800</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>ratio</td>
<td>1</td>
<td>ratio</td>
</tr>
</tbody>
</table>

Pseudo Density

<table>
<thead>
<tr>
<th>RhoB DS</th>
<th>FS RhoB 800</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.00 g/cc</td>
<td>3.00 g/cc</td>
</tr>
</tbody>
</table>

Pseudo Neutron

<table>
<thead>
<tr>
<th>PHIN</th>
<th>FS NPhi WETO</th>
<th>FS NPhi 800</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.60 V/V</td>
<td>0.00 v/v</td>
<td>0.60 v/v</td>
</tr>
</tbody>
</table>

Ductile/Brittle

<table>
<thead>
<tr>
<th>1950</th>
<th>2000</th>
<th>2050</th>
<th>2100</th>
<th>2150</th>
<th>2200</th>
<th>2250</th>
<th>2300</th>
<th>2350</th>
<th>2400</th>
<th>2450</th>
<th>2500</th>
<th>2550</th>
</tr>
</thead>
<tbody>
<tr>
<td>2600</td>
<td>2650</td>
<td>2700</td>
<td>2750</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cannot Compute ductile/brittle when DT Shear is Missing

Missing DT Shear

Use pseudo logs to fill in missing DT shear
Mechanical Properties - San Andres Example

Components
- Porosity: 0.4 V/V
- Oil: 0.4 V/V
- Water: 0.4 V/V
- Shale: 0
- Caliper: 20 IN

Resistivities
- Deep: 0.2 OHMM
- Medium: 0.2 OHMM

Density/Neutron
- Density: 2 G/CC
- Neutron: 0.45 V/V

DF_DT
- Wet: 140 US/ft
- Gas: 240 US/ft

DF_RHOB_DS
- Wet: 1.8 g/cc
- Gas: 1.8 g/cc

Bulk Modulus
- Actual: 0 psi
- Wet: 0 psi
- Oil: 0 psi

Young's Modulus
- Actual: 0 psi
- Wet: 0 psi
- Oil: 0 psi

Poisson Ratio
- Actual: 0
- Wet: 0
- Oil: 0

Young's Modulus Vs. Poisson's Ratio

- **Brittle**
- **Ductile**

Notes:
- Red = Brittle
- Blue = Ductile
Unconventional Reservoirs

- Conventional vs. unconventional reservoir petrophysical models
Unconventional Reservoirs

- **Integrates Geochemistry with Petrophysics**
 - **TOC Component**
 - **Reservoir Wetting**
 - Maturity
 - Clay Mineralogy

Note: Components not to scale
Four Porosity Component Model

- The goal is to calculate the four porosity components from the unconventional reservoir model
 - Effective Porosity Φ_e
 - Total Organic Carbon TOC Φ_{TOC}
 - Clay Porosity Φ_{Clay}
 - Free Shale Porosity Φ_{FS}
TOC Calculation

- TOC Passey et al

Comparison of core TOC (Illustrated by thick black line) with petrophysically determined TOC from each porosity log

TOC = Total Organic Carbon
TOC Calculation

- TOC Schmoker
- Schmoker has three different correlations of RhoB with TOC
- Schmoker high Appalachian correlation
- Schmoker low Appalachian correlation
- Schmoker Williston Basin Bakken
Standard vs. Shale Only Density/Neutron Cross Plots

Standard
Standard vs. Shale Oil Density/Neutron Cross Plots

Shale Only

Plot gives indication of clay mineral species. Application to reservoir wetting – montmorillanite = oil wet? Illite = water wet?

Calculate
Clay Porosity = Cross Plot Porosity X V_{SH}
Free Shale Porosity = Total Porosity – (Effective Porosity + TOC Volume + Clay Porosity)
Free Available Porosity = Effective Porosity + Free Shale Porosity
Free vs. Adsorbed Hydrocarbons

- Free hydrocarbons are located in the free available porosity element, and are calculated using standard approaches.
- Publications on calculating adsorbed hydrocarbon volumes are sparse. Empirical relations are:

Gas – Published Relation

Adsorbed G.I.P. (SCF) = 1359.7 X Area X Thickness X RhoB X (16 X TOC)

Oil – Suggested Relation

Adsorbed O.I.P. (Bbl) = S2 X 0.0007 X RhoB X h X Area X 7758

S2 = Hydrocarbons generated by thermal cracking
Thank You
From

Geochemistry for Energy™