Assessment of Controlling Factors in Mixed Biogenic and Thermogenic Petroleum Systems – A Case Study from the Levantine Basin*

Bjorn Wygrala¹, Wolf Rottke¹, Duplo Kornpihl¹, Martin Neumaier¹, Abdulaziz Al-Balushi², and Lisa Marlow³

Search and Discovery Article #10636 (2014)**
Posted September 12, 2014

*Adapted from poster presentation given at 2014 AAPG Annual Convention and Exhibition, Houston, Texas, April 6-9, 2014
**AAPG©2014 Serial rights given by author. For all other rights contact author directly.

¹Schlumberger, Aachen, Germany (bwygrala@slb.com)
²Halcon, Houston, Texas, USA
³Imperial College, London, United Kingdom

Abstract

The Levantine Basin in the Eastern Mediterranean has become an attractive area for oil and gas exploration due to pioneering efforts of several E&P companies, which have resulted in the discovery of major gas fields in the pre-salt sequences. Information on whether the gas in these new discoveries is of biogenic or thermogenic origin was restricted for a while, as the strategic implications of this knowledge are clear: if the gas is thermogenic, then the chance of deeper thermogenic oil potential could be reduced or even excluded, while biogenic gas would leave an opportunity open for deeper thermogenic systems which could include oil. Publicly available knowledge is developing quickly and it is now accepted that the gas that has been discovered so far in fields such as Tamar and Leviathan is of biogenic origin. As a result, exploration for deeper thermogenic systems is now under way.

We will present a sensitivity analysis of the basic elements of the petroleum systems based on the data that is publicly available at the time of the presentation. In the first part, a regional type-section is used to show the data and interpretations related to the construction and calibration of the model, as well as the underlying assumptions that were used to constrain the model properties and boundary conditions. In the second part of the talk, we will then investigate the properties and processes related to the formation of the currently known biogenic system within these constraints. This will include gas generation, migration and accumulation timing and the controlling factors such as biogenic generation kinetics, gas migration volumes and rates, and seal quality evolution through geologic time. This will enable us to illustrate sensitivities in the system and how well it can be constrained, and to assess the timing relative to the Messinian Salinity Crisis. In the third and final part, we then assess the assumed deeper thermogenic petroleum systems which are at the moment speculative in the study area, and show which range of conditions could lead to the co-existence of biogenic and thermogenic petroleum occurrences. We will be updating the presentation with the latest information available from ongoing exploration efforts in the region. This will be of particular interest, as these activities are expected to result in important enhancements of our knowledge of the role and potential of thermogenic petroleum systems in the area of interest.
Assessment of Controlling Factors in Mixed Biogenic and Thermogenic Petroleum Systems – A Case Study from the Levantine Basin

Bjørn Wygrala1, Wolf Rottke1, Duplo Kornpohl1, Martin Neumaier1, Abdulaziz Al-Balushi2 and Lisa Marlow3

Abstract

The Levantine Basin in the Eastern Mediterranean has become an attractive area for oil and gas exploration due to pioneering efforts of several E&P companies which have resulted in the discovery of major gas fields in the pre-salt sequences. Information on whether the gas in these new discoveries is of biogenic or thermogenic origin was restricted for a while, as the strategic implications of this knowledge are clear: if the gas is thermogenic, then the chance of deeper thermogenic oil potential could be reduced or even excluded, while biogenic gas would leave an opportunity open for deeper thermogenic systems which could include oil. Publicly available knowledge is developing quickly and it is now accepted that the gas that has been discovered so far in fields such as Tamar and Leviathan is of biogenic origin. As a result, exploration for deeper thermogenic systems is now under way.

We will present a sensitivity analysis of the basic elements of the petroleum systems based on the data that is publicly available at the time of the presentation. In the first part, a regional type-section is used to show the data and interpretations related to the construction and calibration of the model, as well as the underlying assumptions that were used to constrain the model properties and boundary conditions. In the second part of the talk, we will then investigate the properties and processes related to the formation of the currently known biogenic system within these constraints. This will include gas generation, migration and accumulation timing and the controlling factors such as biogenic generation kinetics, gas migration volumes and rates, and seal quality evolution through geologic time. This will enable us to illustrate sensitivities in the system and how well it can be constrained, and also to assess the timing relative to the Messinian Salinity Crisis. In the third and final part, we then assess the assumed deeper thermogenic petroleum systems which are at the moment speculative in the study area, and show which range of conditions could lead to the co-existence of biogenic and thermogenic petroleum occurrences.

We will be updating the presentation with the latest information available from ongoing exploration efforts in the region. This will be of particular interest, as these activities are expected to result in important enhancements of our knowledge of the role and potential of thermogenic petroleum systems in the area of interest.
Assessment of Controlling Factors in Mixed Biogenic and Thermogenic Petroleum Systems – A Case Study from the Levantine Basin

Bjorn Wygrala1, Wolf Rottke1, Duplo Kornpihl1, Martin Neumaier1, Abdulaziz Al-Balushi2 and Lisa Marlow3

Modeled and Calibrated Pressures and Temperatures at Present

Messinian Sea Level Changes – Concept and Effects

Effect on biogenic system:
• Pressure drop (20 MPa)
• Temperature increase (25-10 °C)
• Pore space reduction
• Gas generation
• Gas density decrease
• Gas exsolution from pore water

Biogenic Gas Generation Modeling – Kinetics and Timing Relative to MSC

Summary of Effects of MSC on Mixed Biogenic/Thermogenic System

Summary and Conclusions

The Messinian Salinity Crisis resulted in:
• Pressure drop at surface, propagated deep into the subsurface
• Temperature increase at surface, propagated into the subsurface (attenuation with depth)
• Rapid salt deposition

Likely impact on the petroleum systems:
• Shallow biogenic system (first 1000m):
 - More fluids in reduced pore space
 - Fracturing and gas leakage
• Deeper biogenic system conserved (Tamar, Leviathan, Aphrodite)
• Localized destructive impact on potential mixed biogenic/thermogenic accumulations
• Speculative deep petroleum systems are more likely to be preserved

Ongoing Investigation Tasks

Calibration:
• Temperature and Pressure Calibration
• Gas Properties (incl. biogenic vs. thermogenic (condensates)
• Biogenically Sourced Systems:
 - Test range of biogenic models (e.g. Biogenix) and their effects on timing and generated gas
 - Generation timing relative to seal quality development

Thermogenically Sourced Systems:
• Test range of potential source units and kinetics types on petroleum properties in deep targets

References:

Standard thermally controlled biogenic kinetics with 50°C peak and 80°C cutoff - used as reference for testing.

Proven Biogenic Petroleum System (Tamar, Leviathan, Aphrodite)